
Renjie Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6233107/publications.pdf Version: 2024-02-01

RENILE WANC

#	Article	IF	CITATIONS
1	Al _{0.3} InAsSb/Al _{0.7} InAsSb Digital Alloy <i>nBn</i> Photodetectors. Journal of Lightwave Technology, 2022, 40, 113-120.	4.6	5
2	Polarization-Engineered p-Type Electron-Blocking-Layer-Free III-Nitride Deep-Ultraviolet Light-Emitting Diodes for Enhanced Carrier Transport. Journal of Electronic Materials, 2022, 51, 838-846.	2.2	3
3	Infrared Al _{0.15} InAsSb Digital Alloy <i>Nbn</i> Photodetectors. Journal of Lightwave Technology, 2022, 40, 3855-3863.	4.6	1
4	Selective area grown AlInGaN nanowire arrays with core–shell structures for photovoltaics on silicon. Nanoscale, 2021, 13, 8163-8173.	5.6	1
5	Dilute-antimonide GaSbN/GaN dots-in-wire heterostructures grown by molecular beam epitaxy: Structural and optical properties. Applied Physics Letters, 2021, 118, .	3.3	3
6	Demonstration of infrared nBn photodetectors based on the AlInAsSb digital alloy materials system. Applied Physics Letters, 2021, 119, .	3.3	7
7	30â€3: Distinguished Paper: Subâ€Micron Fullâ€Color LED Pixels for Microâ€Displays and Microâ€LED Main Displays. Digest of Technical Papers SID International Symposium, 2020, 51, 432-435.	0.3	2
8	Decoupling Strategy for Enhanced Syngas Generation from Photoelectrochemical CO2 Reduction. IScience, 2020, 23, 101390.	4.1	19
9	Epitaxial Growth and Characterization of AlInN-Based Core-Shell Nanowire Light Emitting Diodes Operating in the Ultraviolet Spectrum. Scientific Reports, 2020, 10, 2547.	3.3	23
10	Submicron full olor LED pixels for microdisplays and micro‣ED main displays. Journal of the Society for Information Display, 2020, 28, 410-417.	2.1	22
11	Enhancing the light extraction efficiency of AlInN nanowire ultraviolet light-emitting diodes with photonic crystal structures. Optics Express, 2020, 28, 22908.	3.4	14
12	Erbium-ytterbium co-doped aluminium oxide waveguide amplifiers fabricated by reactive co-sputtering and wet chemical etching. Optics Express, 2020, 28, 30130.	3.4	13
13	An SEM-Based Nanomanipulation System for Multi-Physical Characterization of Single InGaN/GaN Nanowires. , 2020, , .		1
14	Optically invariant InGaN nanowire light-emitting diodes on flexible substrates under mechanical manipulation. Npj Flexible Electronics, 2019, 3, .	10.7	18
15	Molecular Beam Epitaxy of III-Nitride Nanowires: Emerging Applications From Deep-Ultraviolet Light Emitters and Micro-LEDs to Artificial Photosynthesis. IEEE Nanotechnology Magazine, 2019, 13, 6-16.	1.3	10
16	Characterizing the electrical breakdown properties of single n-i-n-n+:GaN nanowires. Applied Physics Letters, 2018, 113, .	3.3	4
17	InGaN nanowire integrated nanophotonics. , 2017, , .		1

18 Multi-color nanowire LEDs on a single chip. , 2017, , .

Renjie Wang

#	Article	IF	CITATIONS
19	Full-Color Single Nanowire Pixels for Projection Displays. Nano Letters, 2016, 16, 4608-4615.	9.1	151
20	Tunable, full-color nanowire light emitting diode arrays monolithically integrated on Si and sapphire. Proceedings of SPIE, 2016, , .	0.8	14
21	(Invited) High Efficiency, Color-Tunable InGaN/GaN Nanowire Light Emitting Diode Arrays. ECS Meeting Abstracts, 2016, , .	0.0	0
22	High efficiency, full-color AlInGaN quaternary nanowire light emitting diodes with spontaneous core-shell structures on Si. Applied Physics Letters, 2015, 106, .	3.3	42
23	Color-tunable, phosphor-free InGaN nanowire light-emitting diode arrays monolithically integrated on silicon. Optics Express, 2014, 22, A1768.	3.4	82
24	Color Tunable Phosphor-Free InGaN/GaN/AlGaN Core-Shell Nanowire Light-Emitting Diodes on Silicon. , 2014, , .		1
25	High mobility single-crystalline-like germanium thin films on flexible, inexpensive substrates. Thin Solid Films, 2013, 527, 9-15.	1.8	16
26	Prefabricated Metal Nanorods on Biaxially-Textured Templates on Flexible Substrates for REBCO Superconductors. IEEE Transactions on Applied Superconductivity, 2013, 23, 6600705-6600705.	1.7	5
27	Optimization of a single crystalline-like germanium thin film growth on inexpensive flexible substrates and fabrication of germanium bottom junction. , 2013, , .		0
28	Epitaxial growth of (100) GaAs on CeOx coated flexible metal substrates. , 2012, , .		3
29	Novel single-crystalline-like germanium thin films on flexible, inexpensive substrates: Influence of architecture and film thickness. , 2011, , .		1