List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6233010/publications.pdf Version: 2024-02-01

		47006	58581
227	8,367	47	82
papers	citations	h-index	g-index
231	231	231	5922
all docs	docs citations	times ranked	citing authors

LAIREDTO NEDED

#	Article	IF	CITATIONS
1	Compensatory responses to increased mechanical abnormalities in COPD during sleep. European Journal of Applied Physiology, 2022, 122, 663-676.	2.5	5
2	Using Cardiopulmonary Exercise Testing to Understand Dyspnea and Exercise Intolerance in Respiratory Disease. Chest, 2022, 161, 1505-1516.	0.8	31
3	Breathing too much! Ventilatory inefficiency and exertional dyspnea in pulmonary hypertension. Jornal Brasileiro De Pneumologia, 2022, 48, e20220037.	0.7	0
4	Impaired Ventilatory Efficiency, Dyspnea, and Exercise Intolerance in Chronic Obstructive Pulmonary Disease: Results from the CanCOLD Study. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 1391-1402.	5.6	19
5	Vì‡/Q̇ Mismatch. Chest, 2022, 162, 1030-1047.	0.8	8
6	The new ERS/ATS standards on lung function test interpretation: some extant limitations. European Respiratory Journal, 2022, , 2200252.	6.7	2
7	Deterioration of Nighttime Respiratory Mechanics in COPD. Chest, 2021, 159, 116-127.	0.8	12
8	The role of peripheral muscle fatigability on exercise intolerance in COPD. Expert Review of Respiratory Medicine, 2021, 15, 117-129.	2.5	2
9	Elevated exercise ventilation in mild COPD is not linked to enhanced central chemosensitivity. Respiratory Physiology and Neurobiology, 2021, 284, 103571.	1.6	11
10	Influence of exertional hypoxemia on cerebral oxygenation in fibrotic interstitial lung disease. Respiratory Physiology and Neurobiology, 2021, 285, 103601.	1.6	9
11	Mechanisms of orthopnoea in patients with advanced COPD. European Respiratory Journal, 2021, 57, 2000754.	6.7	7
12	Quantification of oxygen exchange inefficiency in interstitial lung disease. Jornal Brasileiro De Pneumologia, 2021, 47, e20210028-e20210028.	0.7	0
13	Oxygen supplementation during exercise improves leg muscle fatigue in chronic fibrotic interstitial lung disease. Thorax, 2021, 76, 672-680.	5.6	12
14	Clinical Interpretation of Cardiopulmonary Exercise Testing: Current Pitfalls and Limitations. Frontiers in Physiology, 2021, 12, 552000.	2.8	15
15	Exposing Pre–Chronic Obstructive Pulmonary Disease: When Physiology Matters!. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 110-111.	5.6	4
16	Recent Advances in the Physiological Assessment of Dyspneic Patients with Mild COPD. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2021, 18, 374-384.	1.6	4
17	Reduced exercise tolerance in mild chronic obstructive pulmonary disease: The contribution of combined abnormalities of diffusing capacity for carbon monoxide and ventilatory efficiency. Respirology, 2021, 26, 786-795.	2.3	12
18	Functional respiratory assessment: some key misconceptions and their clinical implications. Thorax, 2021, 76, 644-646.	5.6	6

#	Article	IF	CITATIONS
19	Is this asthma, COPD, or both?. Jornal Brasileiro De Pneumologia, 2021, 47, e20210114.	0.7	О
20	Sleep quality and architecture in COPD: the relationship with lung function abnormalities. Jornal Brasileiro De Pneumologia, 2021, 47, e20200612.	0.7	2
21	Editorial: Clinical Cardiopulmonary Exercise Testing. Frontiers in Physiology, 2021, 12, 711505.	2.8	2
22	Response. Chest, 2021, 159, 2514-2515.	0.8	0
23	Out-of-proportion dyspnea and exercise intolerance in mild COPD. Jornal Brasileiro De Pneumologia, 2021, 47, e20210205.	0.7	1
24	Proportional Assist Ventilation Improves Leg Muscle Reoxygenation After Exercise in Heart Failure With Reduced Ejection Fraction. Frontiers in Physiology, 2021, 12, 685274.	2.8	6
25	Qualitative Components of Dyspnea during Incremental Exercise across the COPD Continuum. Medicine and Science in Sports and Exercise, 2021, 53, 2467-2476.	0.4	13
26	Mechanisms of Exertional Dyspnea in Patients with Mild COPD and a Low Resting DL _{CO} . COPD: Journal of Chronic Obstructive Pulmonary Disease, 2021, 18, 501-510.	1.6	8
27	Exertional ventilation/carbon dioxide output relationship in COPD: from physiological mechanisms to clinical applications. European Respiratory Review, 2021, 30, 200190.	7.1	6
28	Clinical and Prognostic Impact of Low Diffusing Capacity for Carbon Monoxide Values in Patients With Global Initiative for Obstructive Lung Disease I COPD. Chest, 2021, 160, 872-878.	0.8	22
29	Right ventricular dimensions during COPD exacerbations: A matter of low preload versus high afterload?. Respirology, 2021, , .	2.3	1
30	Exercise ventilation and dyspnea in the obese patient with chronic obstructive pulmonary disease: "how much―versus "how well― Chronic Respiratory Disease, 2021, 18, 147997312110591.	2.4	0
31	The Exercising Brain: An Overlooked Factor Limiting the Tolerance to Physical Exertion in Major Cardiorespiratory Diseases?. Frontiers in Human Neuroscience, 2021, 15, 789053.	2.0	2
32	Dyspnea in COPD: New Mechanistic Insights and Management Implications. Advances in Therapy, 2020, 37, 41-60.	2.9	105
33	On the complexities of measuring exercise "ventilatory efficiency―in obstructive lung diseases. Pediatric Pulmonology, 2020, 55, 280-282.	2.0	8
34	Uncovering the mechanisms of exertional dyspnoea in combined pulmonary fibrosis and emphysema. European Respiratory Journal, 2020, 55, 1901319.	6.7	16
35	Impact of a Specialized Ambulatory Clinic on Refractory Breathlessness in Subjects With Advanced COPD. Respiratory Care, 2020, 65, 444-454.	1.6	5
36	Lung Function Testing in Chronic Obstructive Pulmonary Disease. Clinics in Chest Medicine, 2020, 41, 347-366.	2.1	10

#	Article	IF	CITATIONS
37	Heart, lungs, and muscle interplay in worsening activity-related breathlessness in advanced cardiopulmonary disease. Current Opinion in Supportive and Palliative Care, 2020, 14, 157-166.	1.3	5
38	Evaluation of Dynamic Respiratory Mechanical Abnormalities During Conventional CPET. Frontiers in Medicine, 2020, 7, 548.	2.6	9
39	Are the "critical―inspiratory constraints actually decisive to limit exercise tolerance in COPD?. ERJ Open Research, 2020, 6, 00178-2020.	2.6	3
40	Dyspnea and Exercise Limitation in Mild COPD: The Value of CPET. Frontiers in Medicine, 2020, 7, 442.	2.6	14
41	Low <i>D</i> _{LCO} predicts all-cause hospital admissions in patients with reduced left ventricular ejection fraction or diastolic dysfunction. ERJ Open Research, 2020, 6, 00095-2020.	2.6	2
42	Ventilatory demand–capacity imbalance during incremental exercise in COPD: an <i>in silico</i> perspective. European Respiratory Journal, 2020, 56, 2000495.	6.7	2
43	Exercise Tolerance according to the Definition of Airflow Obstruction in Smokers. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 760-762.	5.6	14
44	A Frame of Reference for Assessing the Intensity of Exertional Dyspnoea During Incremental Cycle Ergometry. European Respiratory Journal, 2020, 56, 2000191.	6.7	19
45	Cardiovascular and pulmonary interactions: why Galen's misconceptions proved clinically useful for 1,300 years. American Journal of Physiology - Advances in Physiology Education, 2020, 44, 225-231.	1.6	3
46	The Lung Function Laboratory to Assist Clinical Decision-making in Pulmonology. Chest, 2020, 158, 1629-1643.	0.8	14
47	Breathing at Extremes. Chest, 2020, 158, 1576-1585.	0.8	19
48	Exertional dyspnoea–ventilation relationship to discriminate respiratory from cardiac impairment. European Respiratory Journal, 2020, 55, 1901518.	6.7	8
49	Resting <i>V</i> ′ _E / <i>V</i> ′ _{CO₂} adds to inspiratory capacity to predict the burden of exertional dyspnoea in COPD. European Respiratory Journal, 2020, 56, 1902434.	6.7	4
50	Residual Exertional Dyspnea in Cardiopulmonary Disease. Annals of the American Thoracic Society, 2020, 17, 1516-1525.	3.2	15
51	Obesity: how pulmonary function tests may let us down. Jornal Brasileiro De Pneumologia, 2020, 46, e20200116-e20200116.	0.7	4
52	Cardiovascular Comorbidity in Chronic Lung Disease: The Role of Cardiopulmonary Exercise Testing. Respiratory Medicine, 2020, , 115-147.	0.1	1
53	Integrating measurements of pulmonary gas exchange to answer clinically relevant questions. Jornal Brasileiro De Pneumologia, 2020, 46, e20200019.	0.7	4
54	Arterial blood gases in the differential diagnosis of hypoxemia. Jornal Brasileiro De Pneumologia, 2020, 46, e20200505-e20200505.	0.7	2

#	Article	IF	CITATIONS
55	Absence of airflow obstruction on spirometry: can it still be COPD?. Jornal Brasileiro De Pneumologia, 2020, 46, e20200602-e20200602.	0.7	0
56	Effects of high- and moderate-intensity exercise on central hemodynamic and oxygen uptake recovery kinetics in CHF-COPD overlap. Brazilian Journal of Medical and Biological Research, 2020, 53, e9391.	1.5	1
57	Why Clinical Physiology Remains Vital in the Modern Era. Clinics in Chest Medicine, 2019, 40, xiii-xiv.	2.1	2
58	Low resting diffusion capacity, dyspnea, and exercise intolerance in chronic obstructive pulmonary disease. Journal of Applied Physiology, 2019, 127, 1107-1116.	2.5	38
59	Inspiratory Constraints and Ventilatory Inefficiency Are Superior to Breathing Reserve in the Assessment of Exertional Dyspnea in COPD. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2019, 16, 174-181.	1.6	35
60	Cardiopulmonary and Muscular Interactions: Potential Implications for Exercise (In)tolerance in Symptomatic Smokers Without Chronic Obstructive Pulmonary Disease. Frontiers in Physiology, 2019, 10, 859.	2.8	4
61	Incorporating Lung Diffusing Capacity for Carbon Monoxide in Clinical Decision Making in Chest Medicine. Clinics in Chest Medicine, 2019, 40, 285-305.	2.1	34
62	Clinical and Physiologic Implications of Negative Cardiopulmonary Interactions in Coexisting Chronic Obstructive Pulmonary Disease-Heart Failure. Clinics in Chest Medicine, 2019, 40, 421-438.	2.1	20
63	The Pathophysiology of Dyspnea and Exercise Intolerance in Chronic Obstructive Pulmonary Disease. Clinics in Chest Medicine, 2019, 40, 343-366.	2.1	41
64	Unraveling the Causes of Unexplained Dyspnea. Clinics in Chest Medicine, 2019, 40, 471-499.	2.1	30
65	Chronic respiratory diseases: The dawn of precision rehabilitation. Respirology, 2019, 24, 826-827.	2.3	1
66	Sensory consequences of critical inspiratory constraints during exercise in pulmonary arterial hypertension. Respiratory Physiology and Neurobiology, 2019, 261, 40-47.	1.6	3
67	Tidal Flow-Volume Loop Enveloping at Rest in Advanced COPD. Respiratory Care, 2019, 64, 1488-1499.	1.6	2
68	Effects of lung deflation induced by tiotropium/olodaterol on the cardiocirculatory responses to exertion in COPD. Respiratory Medicine, 2019, 157, 59-68.	2.9	6
69	The role of evaluating inspiratory constraints and ventilatory inefficiency in the investigation of dyspnea of unclear etiology. Respiratory Medicine, 2019, 158, 6-13.	2.9	21
70	The Integrative Physiology of Exercise Training in Patients with COPD. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2019, 16, 182-195.	1.6	18
71	Reduced exercise ventilatory efficiency in adults with cystic fibrosis and normal to moderately impaired lung function. Journal of Applied Physiology, 2019, 127, 501-512.	2.5	7
72	Effects of bi-level positive airway pressure on ventilatory and perceptual responses to exercise in comorbid heart failure-COPD. Respiratory Physiology and Neurobiology, 2019, 266, 18-26.	1.6	4

#	Article	IF	CITATIONS
73	Transfer coefficient of the lung for carbon monoxide and the accessible alveolar volume: clinically useful if used wisely. Breathe, 2019, 15, 69-76.	1.3	10
74	Submaximal exercise cardiac output is increased by 4 weeks of sprint interval training in young healthy males with low initial Qì‡-V̇O2: Importance of cardiac response phenotype. PLoS ONE, 2019, 14, e0195458.	2.5	4
75	ERS statement on respiratory muscle testing at rest and during exercise. European Respiratory Journal, 2019, 53, 1801214.	6.7	379
76	Exercise intolerance in comorbid COPD and heart failure: the role of impairedÂaerobic function. European Respiratory Journal, 2019, 53, 1802386.	6.7	16
77	Is the Slow Vital Capacity Clinically Useful to Uncover Airflow Limitation in Subjects With Preserved FEV1/FVC Ratio?. Chest, 2019, 156, 497-506.	0.8	21
78	Ventilatory Demand During Stepping and Running: Implications for Exercise-Induced Bronchoconstriction in Children. Respiratory Care, 2019, 64, 445-452.	1.6	1
79	Does oxygen pulse trajectory during incremental exercise discriminate impaired oxygen delivery from poor muscle oxygen utilisation?. ERJ Open Research, 2019, 5, 00108-2018.	2.6	10
80	ERS statement on standardisation of cardiopulmonary exercise testing in chronic lung diseases. European Respiratory Review, 2019, 28, 180101.	7.1	167
81	Locomotor Muscles in COPD: The Rationale for Rehabilitative Exercise Training. Frontiers in Physiology, 2019, 10, 1590.	2.8	27
82	Practical challenges of diagnosing obstruction in the presence of restriction. Jornal Brasileiro De Pneumologia, 2019, 45, e20190318.	0.7	1
83	Why we should never ignore an "isolated―low lung diffusing capacity. Jornal Brasileiro De Pneumologia, 2019, 45, e20190241.	0.7	2
84	Uncovering the beneficial effects of inhaled bronchodilator in COPD: beyond forced spirometry. Jornal Brasileiro De Pneumologia, 2019, 45, e20190168.	0.7	1
85	Measuring slow vital capacity to detect airflow limitation in a woman with dyspnea and a preserved FEV1/FVC ratio. Jornal Brasileiro De Pneumologia, 2019, 45, e20190084.	0.7	1
86	Characteristics associated with mortality in patients with chronic obstructive pulmonary disease (COPD)–heart failure coexistence. Primary Health Care Research and Development, 2018, 19, 570-574.	1.2	4
87	A Simplified Approach to Select Exercise Endurance Intensity for Interventional Studies in COPD. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2018, 15, 139-147.	1.6	7
88	Excess ventilation in COPD: Implications for dyspnoea and tolerance to interval exercise. Respiratory Physiology and Neurobiology, 2018, 250, 7-13.	1.6	6
89	Systemic vascular dysfunction is associated with emphysema burden in mild COPD. Respiratory Medicine, 2018, 136, 29-36.	2.9	12
90	Acute bronchodilator therapy does not reduce wasted ventilation during exercise in COPD. Respiratory Physiology and Neurobiology, 2018, 252-253, 64-71.	1.6	16

#	Article	IF	CITATIONS
91	Sensory-mechanical effects of a dual bronchodilator and its anticholinergic component in COPD. Respiratory Physiology and Neurobiology, 2018, 247, 116-125.	1.6	9
92	Inspiratory muscle weakness contributes to exertional dyspnea in chronic thromboembolic pulmonary hypertension. PLoS ONE, 2018, 13, e0204072.	2.5	8
93	Heart or Lungs? Uncovering the Causes of Exercise Intolerance in a Patient with Chronic Cardiopulmonary Disease. Annals of the American Thoracic Society, 2018, 15, 1096-1104.	3.2	2
94	Do interindividual differences in cardiac output during submaximal exercise explain differences in exercising muscle oxygenation and ratings of perceived exertion?. Physiological Reports, 2018, 6, e13570.	1.7	5
95	Inspiratory muscle training reduces diaphragm activation and dyspnea during exercise in COPD. Journal of Applied Physiology, 2018, 125, 381-392.	2.5	104
96	Contribution of central and peripheral adaptations to changes in maximal oxygen uptake following 4 weeks of sprint interval training. Applied Physiology, Nutrition and Metabolism, 2018, 43, 1059-1068.	1.9	38
97	A rare case of pulmonary <i>Mycobacterium szulgai</i> treated with combined drug therapy and bilateral surgical lung resection. Canadian Journal of Respiratory, Critical Care, and Sleep Medicine, 2018, 2, 166-168.	0.5	0
98	Current challenges in managing comorbid heart failure and COPD. Expert Review of Cardiovascular Therapy, 2018, 16, 653-673.	1.5	30
99	Dietary nitrate supplementation and exercise tolerance in patients with heart failure with reduced ejection fraction. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 312, R13-R22.	1.8	54
100	Impaired exercise ventilatory efficiency in smokers with low transfer factor but normal spirometry. European Respiratory Journal, 2017, 49, 1602511.	6.7	14
101	Physiological and clinical relevance of exercise ventilatory efficiency in COPD. European Respiratory Journal, 2017, 49, 1602036.	6.7	74
102	The Link between Reduced Inspiratory Capacity and Exercise Intolerance in Chronic Obstructive Pulmonary Disease. Annals of the American Thoracic Society, 2017, 14, S30-S39.	3.2	50
103	Mild chronic obstructive pulmonary disease: why spirometry is not sufficient!. Expert Review of Respiratory Medicine, 2017, 11, 549-563.	2.5	14
104	Resting Physiological Correlates of Reduced Exercise Capacity in Smokers with Mild Airway Obstruction. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2017, 14, 267-275.	1.6	31
105	Oral <i>N</i> -acetylcysteine and exercise tolerance in mild chronic obstructive pulmonary disease. Journal of Applied Physiology, 2017, 122, 1351-1361.	2.5	12
106	Ventilatory Inefficiency and Exertional Dyspnea in Early Chronic Obstructive Pulmonary Disease. Annals of the American Thoracic Society, 2017, 14, S22-S29.	3.2	41
107	Emphysema on Thoracic CT and Exercise Ventilatory Inefficiency in Mild-to-Moderate COPD. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2017, 14, 210-218.	1.6	39
16.5	Mauimal Japanimatan Braasung Chast 2017 152 22 20	0.6	10

108 Maximal Inspiratory Pressure. Chest, 2017, 152, 32-39.

0.8 48

#	Article	IF	CITATIONS
109	Clinical exercise testing: basicÂprinciples and practice. Breathe, 2017, 13, 163-164.	1.3	2
110	Unraveling the Cause of Severe Exertional Dyspnea in a Heavy Smoker. Annals of the American Thoracic Society, 2017, 14, 1849-1855.	3.2	0
111	Excess Ventilation in Chronic Obstructive Pulmonary Disease–Heart Failure Overlap. Implications for Dyspnea and Exercise Intolerance. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 1264-1274.	5.6	58
112	Advances in the Evaluation of Respiratory Pathophysiology during Exercise in Chronic Lung Diseases. Frontiers in Physiology, 2017, 8, 82.	2.8	71
113	A practical approach to assess leg muscle oxygenation during ramp-incremental cycle ergometry in heart failure. Brazilian Journal of Medical and Biological Research, 2017, 50, e6327.	1.5	9
114	Update on Nonsurgical Lung Volume Reduction Procedures. Canadian Respiratory Journal, 2016, 2016, 1-6.	1.6	4
115	A 56-Year-Old, Otherwise Healthy Woman Presenting With Light-headedness and Progressive Shortness of Breath. Chest, 2016, 150, e23-e27.	0.8	6
116	Effective Bronchoscopic Lung Volume Reduction Accelerates Exercise Oxygen Uptake Kinetics in Emphysema. Chest, 2016, 149, 435-446.	0.8	29
117	Inspiratory loading and limb blood flow in COPD: The modulating effects of resting lung hyperinflation. Respiratory Physiology and Neurobiology, 2016, 228, 25-29.	1.6	3
118	Insights into ventilation–gas exchange coupling in chronic thromboembolic pulmonary hypertension. European Respiratory Journal, 2016, 48, 252-254.	6.7	6
119	Exercise Ventilatory Inefficiency Adds to Lung Function in Predicting Mortality in COPD. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2016, 13, 416-424.	1.6	40
120	Pharmacological management of breathlessness in COPD: recent advances and hopes for the future. Expert Review of Respiratory Medicine, 2016, 10, 823-834.	2.5	18
121	Exercise Ventilation in COPD: Influence of Systolic Heart Failure. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2016, 13, 693-699.	1.6	29
122	Exertional dyspnoea in COPD: the clinical utility of cardiopulmonary exercise testing. European Respiratory Review, 2016, 25, 333-347.	7.1	72
123	Clinical usefulness of end-tidal CO2 profiles during incremental exercise in patients with chronic thromboembolic pulmonary hypertension. Respiratory Medicine, 2016, 120, 70-77.	2.9	15
124	Physiological and sensory consequences of exercise oscillatory ventilation in heart failure-COPD. International Journal of Cardiology, 2016, 224, 447-453.	1.7	21
125	Mechanisms of exertional dyspnoea in symptomatic smokers without COPD. European Respiratory Journal, 2016, 48, 694-705.	6.7	70
126	Cerebral microvascular blood flow and CO 2 reactivity in pulmonary arterial hypertension. Respiratory Physiology and Neurobiology, 2016, 233, 60-65.	1.6	15

#	Article	IF	CITATIONS
127	Is the six-minute walk test a useful tool to prescribe high-intensity exercise in patients with chronic obstructive pulmonary disease?. Heart and Lung: Journal of Acute and Critical Care, 2016, 45, 550-556.	1.6	6
128	Chronic breathlessness in patients with idiopathic pulmonary fibrosis: a major challenge for caregivers. Expert Review of Respiratory Medicine, 2016, 10, 1295-1303.	2.5	11
129	Does Exercise Ventilatory Inefficiency Predict Poor Outcome in Heart Failure Patients With COPD?. Journal of Cardiopulmonary Rehabilitation and Prevention, 2016, 36, 454-459.	2.1	13
130	Use of exercise testing in the evaluation of interventional efficacy: an official ERS statement. European Respiratory Journal, 2016, 47, 429-460.	6.7	311
131	Heart Failure Impairs Muscle Blood Flow and Endurance Exercise Tolerance in COPD. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2016, 13, 407-415.	1.6	26
132	Pulmonary artery wedge pressure and exercise oscillatory ventilation in pre-capillary pulmonary hypertension. International Journal of Cardiology, 2016, 206, 164-166.	1.7	3
133	Respiratory Factors Contributing to Exercise Intolerance in Breast Cancer Survivors: A Case-Control Study. Journal of Pain and Symptom Management, 2016, 52, 54-63.	1.2	22
134	Physiological impairment in mild <scp>COPD</scp> . Respirology, 2016, 21, 211-223.	2.3	31
135	Ventilation Heterogeneity in Never-smokers and COPD:. Academic Radiology, 2016, 23, 398-405.	2.5	21
136	Common Mechanisms of Dyspnea in Chronic Interstitial and Obstructive Lung Disorders. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 299-309.	5.6	196
137	Effects of heart failure on cerebral blood flow in COPD: Rest and exercise. Respiratory Physiology and Neurobiology, 2016, 221, 41-48.	1.6	25
138	Reply: Effects of Mild Chronic Obstructive Pulmonary Disease on Gas Exchange during Cycling and Walking. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 1138-1139.	5.6	0
139	Exercise ventilatory inefficiency in mild to end-stage COPD. European Respiratory Journal, 2015, 45, 377-387.	6.7	122
140	Reliability of peak O2 uptake and O2 uptake kinetics in step exercise tests in healthy subjects. Respiratory Physiology and Neurobiology, 2015, 207, 7-13.	1.6	6
141	Oxygen delivery-utilization mismatch in contracting locomotor muscle in COPD: peripheral factors. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 308, R105-R111.	1.8	21
142	Ventilation Distribution Heterogeneity at Rest as a Marker of Exercise Impairment in Mild-to-Advanced COPD. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2015, 12, 252-259.	1.6	32
143	Impact of chronic obstructive pulmonary disease on exercise ventilatory efficiency in heart failure. International Journal of Cardiology, 2015, 189, 134-140.	1.7	66
144	Exercise Intolerance in Pulmonary Arterial Hypertension. The Role of Cardiopulmonary Exercise Testing. Annals of the American Thoracic Society, 2015, 12, 604-612.	3.2	27

#	Article	IF	CITATIONS
145	Physiologic Characterization of the Chronic Bronchitis Phenotype in GOLD Grade IB COPD. Chest, 2015, 147, 1235-1245.	0.8	32
146	Pulmonary Gas Exchange Abnormalities in Mild Chronic Obstructive Pulmonary Disease. Implications for Dyspnea and Exercise Intolerance. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 1384-1394.	5.6	180
147	Intra-dialytic training accelerates oxygen uptake kinetics in hemodialysis patients. European Journal of Preventive Cardiology, 2015, 22, 912-919.	1.8	13
148	Effect of age-related ventilatory inefficiency on respiratory sensation during exercise. Respiratory Physiology and Neurobiology, 2015, 205, 129-139.	1.6	23
149	Differences in respiratory muscle activity during cycling and walking do not influence dyspnea perception in obese patients with COPD. Journal of Applied Physiology, 2014, 117, 1292-1301.	2.5	26
150	Inspiratory resistance decreases limb blood flow in COPD patients with heart failure. European Respiratory Journal, 2014, 43, 1507-1510.	6.7	9
151	Lung hyperinflation in chronic obstructive pulmonary disease: mechanisms, clinical implications and treatment. Expert Review of Respiratory Medicine, 2014, 8, 731-749.	2.5	53
152	Sympathetic ganglion transcutaneous electrical nerve stimulation after coronary artery bypass graft surgery improves femoral blood flow and exercise tolerance. Journal of Applied Physiology, 2014, 117, 633-638.	2.5	9
153	Does exercise test modality influence dyspnoea perception in obese patients with COPD?. European Respiratory Journal, 2014, 43, 1621-1630.	6.7	24
154	Exercise oxygen uptake efficiency slope independently predicts poor outcome in pulmonary arterial hypertension. European Respiratory Journal, 2014, 43, 1510-1512.	6.7	20
155	Sildenafil improves skeletal muscle oxygenation during exercise in men with intermittent claudication. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R396-R404.	1.8	21
156	Optimizing the evaluation of excess exercise ventilation for prognosis assessment in pulmonary arterial hypertension. European Journal of Preventive Cardiology, 2014, 21, 1409-1419.	1.8	34
157	Chronic Obstructive Pulmonary Disease. Clinics in Chest Medicine, 2014, 35, 51-69.	2.1	112
158	When Obesity and Chronic Obstructive Pulmonary Disease Collide. Physiological and Clinical Consequences. Annals of the American Thoracic Society, 2014, 11, 635-644.	3.2	82
159	Mechanisms of exercise intolerance in Global Initiative for Chronic Obstructive Lung Disease grade 1 COPD. European Respiratory Journal, 2014, 44, 1177-1187.	6.7	110
160	Does expiratory muscle activity influence dynamic hyperinflation and exertional dyspnea in COPD?. Respiratory Physiology and Neurobiology, 2014, 199, 24-33.	1.6	56
161	Does impaired O2 delivery during exercise accentuate central and peripheral fatigue in patients with coexistent COPD-CHF?. Frontiers in Physiology, 2014, 5, 514.	2.8	23
162	Should Mild COPD Be Treated? Evidence for Early Pharmacological Intervention. Drugs, 2013, 73, 1991-2001.	10.9	17

#	Article	IF	CITATIONS
163	Heart failure impairs cerebral oxygenation during exercise in patients with COPD. European Respiratory Journal, 2013, 42, 1423-1426.	6.7	16
164	Exercise tolerance with helium-hyperoxia <i>versus</i> hyperoxia in hypoxaemic patients with COPD. European Respiratory Journal, 2013, 42, 362-370.	6.7	13
165	Additive effects of nonâ€invasive ventilation to hyperoxia on cerebral oxygenation in <scp>COPD</scp> patients with exerciseâ€related O ₂ desaturation. Clinical Physiology and Functional Imaging, 2013, 33, 274-281.	1.2	12
166	Effects of bicarbonate on oxyhaemoglobin desaturation and exercise performance in athletes. Journal of Sports Medicine and Physical Fitness, 2013, 53, 470-6.	0.7	0
167	Signalâ€morphology impedance cardiography during incremental cardiopulmonary exercise testing in pulmonary arterial hypertension. Clinical Physiology and Functional Imaging, 2012, 32, 343-352.	1.2	16
168	Skeletal muscle reoxygenation after high-intensity exercise in mitochondrial myopathy. European Journal of Applied Physiology, 2012, 112, 1763-1771.	2.5	9
169	Sildenafil improves microvascular O ₂ delivery-to-utilization matching and accelerates exercise O ₂ uptake kinetics in chronic heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H1474-H1480.	3.2	49
170	Heart rate recovery in pulmonary arterial hypertension: Relationship with exercise capacity and prognosis. American Heart Journal, 2012, 163, 580-588.	2.7	67
171	Effects of oxygen supplementation on cerebral oxygenation during exercise in chronic obstructive pulmonary disease patients not entitled to longâ€ŧerm oxygen therapy. Clinical Physiology and Functional Imaging, 2012, 32, 52-58.	1.2	26
172	Constant Work-Rate Test to Assess the Effects of Intradialytic Aerobic Training in Mildly Impaired Patients With End-Stage Renal Disease: A Randomized Controlled Trial. Archives of Physical Medicine and Rehabilitation, 2011, 92, 2018-2024.	0.9	27
173	Kinetics of skeletal muscle O2 delivery and utilization at the onset of heavy-intensity exercise in pulmonary arterial hypertension. European Journal of Applied Physiology, 2011, 111, 1851-1861.	2.5	28
174	Lung diffusing capacity relates better to shortâ€ŧerm progression on HRCT abnormalities than spirometry in mild asbestosis. American Journal of Industrial Medicine, 2011, 54, 185-193.	2.1	17
175	Influence of respiratory pressure support on hemodynamics and exercise tolerance in patients with COPD. European Journal of Applied Physiology, 2010, 109, 681-689.	2.5	23
176	Effects of hyperoxia on the dynamics of skeletal muscle oxygenation at the onset of heavy-intensity exercise in patients with COPD. Respiratory Physiology and Neurobiology, 2010, 172, 8-14.	1.6	18
177	Kinetics analysis of muscle arterial–venous O2 difference profile during exercise. Respiratory Physiology and Neurobiology, 2010, 173, 51-57.	1.6	13
178	Haemodynamic effects of proportional assist ventilation during highâ€intensity exercise in patients with chronic obstructive pulmonary disease. Respirology, 2010, 15, 1185-1191.	2.3	17
179	Bronchodilators accelerate the dynamics of muscle O2 delivery and utilisation during exercise in COPD. Thorax, 2010, 65, 588-593.	5.6	56
180	On the issue of exercise normalcy. European Respiratory Journal, 2009, 34, 286-287.	6.7	1

#	Article	IF	CITATIONS
181	Heliox Improves Oxygen Delivery and Utilization during Dynamic Exercise in Patients with Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2009, 179, 1004-1010.	5.6	117
182	Inspiratory resistive loading after all-out exercise improves subsequent performance. European Journal of Applied Physiology, 2009, 106, 297-303.	2.5	17
183	Respiratory muscle function and exercise intolerance in heart failure. Current Heart Failure Reports, 2009, 6, 95-101.	3.3	103
184	Microvascular oxygen delivery-to-utilization mismatch at the onset of heavy-intensity exercise in optimally treated patients with CHF. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H1720-H1728.	3.2	50
185	Respiratory muscle unloading improves leg muscle oxygenation during exercise in patients with COPD. Thorax, 2008, 63, 910-915.	5.6	136
186	Effects of respiratory muscle unloading on leg muscle oxygenation and blood volume during high-intensity exercise in chronic heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H2465-H2472.	3.2	82
187	Kinetics of muscle deoxygenation are accelerated at the onset of heavy-intensity exercise in patients with COPD: relationship to central cardiovascular dynamics. Journal of Applied Physiology, 2008, 104, 1341-1350.	2.5	100
188	Blood Lactate during Recovery from Intense Exercise. Medicine and Science in Sports and Exercise, 2008, 40, 111-116.	0.4	22
189	Asbestos-related Disease. Journal of Thoracic Imaging, 2008, 23, 251-257.	1.5	18
190	Rebuttal from Drs. O'Donnell and Webb. Journal of Applied Physiology, 2008, 105, 756-757.	2.5	1
191	Effects of formoterol on exercise tolerance in severely disabled patients with COPD. Respiratory Medicine, 2007, 101, 2056-2064.	2.9	44
192	Skeletal muscle ergoreflex overactivity is not related to exercise ventilatory inefficiency in non-hypoxaemic patients with COPD. European Journal of Applied Physiology, 2007, 101, 705-712.	2.5	6
193	Asbestos-related diseases of the lungs and pleura: uses, trends and management over the last century. International Journal of Tuberculosis and Lung Disease, 2007, 11, 356-69.	1.2	61
194	A Simplified Strategy for the Estimation of the Exercise Ventilatory Thresholds. Medicine and Science in Sports and Exercise, 2006, 38, 1007-1013.	0.4	50
195	Alternative strategies for exercise critical power estimation in patients with COPD. European Journal of Applied Physiology, 2006, 96, 59-65.	2.5	24
196	Scaling skeletal muscle function to mass in patients with moderate-to-severe COPD. European Journal of Applied Physiology, 2006, 98, 482-488.	2.5	26
197	A step test to assess exercise-related oxygen desaturation in interstitial lung disease. European Respiratory Journal, 2006, 29, 330-336.	6.7	99
198	Inspiratory fraction and exercise impairment in COPD patients GOLD stages II-III. European Respiratory Journal, 2006, 28, 939-944.	6.7	85

#	Article	IF	CITATIONS
199	Clinical Role of Rapid-Incremental Tests in the Evaluation of Exercise-Induced Bronchoconstriction. Chest, 2005, 128, 2435-2442.	0.8	14
200	Breathing pattern of athletes with cerebral palsy. Developmental Medicine and Child Neurology, 2005, 47, 286-287.	2.1	4
201	Non-malignant consequences of decreasing asbestos exposure in the Brazil chrysotile mines and mills. Occupational and Environmental Medicine, 2005, 62, 381-389.	2.8	18
202	Creatine supplementation during pulmonary rehabilitation in chronic obstructive pulmonary disease. Thorax, 2005, 60, 531-537.	5.6	109
203	Thin-Section CT Abnormalities and Pulmonary Gas Exchange Impairment in Workers Exposed to Asbestos. Radiology, 2004, 232, 66-74.	7.3	27
204	Clinical, Radiographic and Functional Predictors of Pulmonary Gas Exchange Impairment at Moderate Exercise in Patients with Sarcoidosis. Respiration, 2004, 71, 367-373.	2.6	29
205	Periodic breathing during incremental exercise predicts mortality in patients with chronic heart failure evaluated for cardiac transplantation. Journal of the American College of Cardiology, 2003, 41, 2175-2181.	2.8	180
206	The pattern and timing of breathing during incremental exercise: a normative study. European Respiratory Journal, 2003, 21, 530-538.	6.7	81
207	Clinical Relevance of Inter-Method Differences in Fat-Free Mass Estimation in Chronic Obstructive Pulmonary Disease. Respiration, 2003, 70, 585-593.	2.6	12
208	Home based neuromuscular electrical stimulation as a new rehabilitative strategy for severely disabled patients with chronic obstructive pulmonary disease (COPD). Thorax, 2002, 57, 333-337.	5.6	262
209	Peak &OV0312O2 correction for fat-free mass estimated by anthropometry and DEXA. Medicine and Science in Sports and Exercise, 2001, 33, 1968-1975.	0.4	8
210	Reference Values for Dynamic Responses to Incremental Cycle Ergometry in Males and Females Aged 20 to 80. American Journal of Respiratory and Critical Care Medicine, 2001, 164, 1481-1486.	5.6	121
211	The effect of age on the power/duration relationship and the intensity-domain limits in sedentary men. European Journal of Applied Physiology, 2000, 82, 326-332.	2.5	55
212	Oxygen Cost for Cycling as Related to Leg Mass in Males and Females, Aged 20 to 801. International Journal of Sports Medicine, 2000, 21, 263-269.	1.7	17
213	Determinants of the Exercise Endurance Capacity in Patients with Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2000, 162, 497-504.	5.6	133
214	Heart Rate at the Estimated Lactate Threshold in Patients With Chronic Obstructive Pulmonary Disease: Effects on the Target Intensity for Dynamic Exercise Training. Journal of Cardiopulmonary Rehabilitation and Prevention, 2000, 20, 369-376.	0.5	19
215	Reference values for lung function tests: III. Carbon monoxide diffusing capacity (transfer factor). Brazilian Journal of Medical and Biological Research, 1999, 32, 729-737.	1.5	134
216	Reference values for lung function tests: I. Static volumes. Brazilian Journal of Medical and Biological Research, 1999, 32, 703-717.	1.5	225

#	Article	IF	CITATIONS
217	Short term effects of aerobic training in the clinical management of moderate to severe asthma in children. Thorax, 1999, 54, 202-206.	5.6	113
218	Maximal aerobic power and leg muscle mass and strength related to age in non-athletic males and females. European Journal of Applied Physiology, 1999, 79, 522-530.	2.5	58
219	Reference Values for Concentric Knee Isokinetic Strength and Power in Nonathletic Men and Women from 20 to 80 Years Old. Journal of Orthopaedic and Sports Physical Therapy, 1999, 29, 116-126.	3.5	110
220	Prediction of metabolic and cardiopulmonary responses to maximum cycle ergometry: a randomised study. European Respiratory Journal, 1999, 14, 1304-1313.	6.7	173
221	Reference values for lung function tests: II. Maximal respiratory pressures and voluntary ventilation. Brazilian Journal of Medical and Biological Research, 1999, 32, 719-727.	1.5	657
222	Effect of aerobic training on ventilatory muscle endurance of spinal cord injured men. Spinal Cord, 1998, 36, 240-245.	1.9	42
223	Abnormal patterns of response to incremental CPET. , 0, , 34-58.		10
224	Patterns of cardiopulmonary response to exercise in COPD. , 0, , 107-127.		4
225	Exercise testing in the evaluation of pharmacotherapy in COPD. , 0, , 235-250.		5
226	Introduction: CPET in clinical practice. Recent advances, current challenges and future directions. , 0, , x-xxv.		0
227	Excess ventilation and exertional dyspnoea in heart failure and pulmonary hypertension. European Respiratory Journal. 0 2200144.	6.7	9