
Xinglian Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6231992/publications.pdf Version: 2024-02-01

XINCHAN XII

#	Article	IF	CITATIONS
1	Effect of microbial transglutaminase on NMR relaxometry and microstructure of pork myofibrillar protein gel. European Food Research and Technology, 2009, 228, 665-670.	3.3	157
2	The mechanism of high pressure-induced gels of rabbit myosin. Innovative Food Science and Emerging Technologies, 2012, 16, 41-46.	5.6	130
3	Meat, dairy and plant proteins alter bacterial composition of rat gut bacteria. Scientific Reports, 2015, 5, 15220.	3.3	130
4	Stress Effects on Meat Quality: A Mechanistic Perspective. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 380-401.	11.7	126
5	Redox Regulation in Cancer Stem Cells. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-11.	4.0	124
6	Structural modification by high-pressure homogenization for improved functional properties of freeze-dried myofibrillar proteins powder. Food Research International, 2017, 100, 193-200.	6.2	124
7	Conformational changes induced by high-pressure homogenization inhibit myosin filament formation in low ionic strength solutions. Food Research International, 2016, 85, 1-9.	6.2	110
8	Preparation, characterization, physicochemical property and potential application of porous starch: A review. International Journal of Biological Macromolecules, 2020, 148, 1169-1181.	7.5	101
9	Solubilisation of myosin in a solution of low ionic strength l -histidine: Significance of the imidazole ring. Food Chemistry, 2016, 196, 42-49.	8.2	100
10	Solubilization of myofibrillar proteins in water or low ionic strength media: Classical techniques, basic principles, and novel functionalities. Critical Reviews in Food Science and Nutrition, 2017, 57, 3260-3280.	10.3	96
11	Effect of protein structure on water and fat distribution during meat gelling. Food Chemistry, 2016, 204, 239-245.	8.2	94
12	In vitro protein digestibility of pork products is affected by the method of processing. Food Research International, 2017, 92, 88-94.	6.2	92
13	Discrimination of in vitro and in vivo digestion products of meat proteins from pork, beef, chicken, and fish. Proteomics, 2015, 15, 3688-3698.	2.2	90
14	Effect of Cooking on <i>in Vitro</i> Digestion of Pork Proteins: A Peptidomic Perspective. Journal of Agricultural and Food Chemistry, 2015, 63, 250-261.	5.2	88
15	Dose-dependent effects of rosmarinic acid on formation of oxidatively stressed myofibrillar protein emulsion gel at different NaCl concentrations. Food Chemistry, 2018, 243, 50-57.	8.2	88
16	Emulsifying Properties of Oxidatively Stressed Myofibrillar Protein Emulsion Gels Prepared with (â~ʾ)-Epigallocatechin-3-gallate and NaCl. Journal of Agricultural and Food Chemistry, 2017, 65, 2816-2826.	5.2	86
17	Beef, Casein, and Soy Proteins Differentially Affect Lipid Metabolism, Triglycerides Accumulation and Gut Microbiota of High-Fat Diet-Fed C57BL/6J Mice. Frontiers in Microbiology, 2018, 9, 2200.	3.5	81
18	Structural modification of myofibrillar proteins by high-pressure processing for functionally improved, value-added, and healthy muscle gelled foods. Critical Reviews in Food Science and Nutrition, 2018, 58, 2981-3003.	10.3	80

#	Article	IF	CITATIONS
19	Effect of plant polyphenols and ascorbic acid on lipid oxidation, residual nitrite and Nâ€nitrosamines formation in dryâ€cured sausage. International Journal of Food Science and Technology, 2013, 48, 1157-1164.	2.7	78
20	Enhanced heat stability and antioxidant activity of myofibrillar protein-dextran conjugate by the covalent adduction of polyphenols. Food Chemistry, 2021, 352, 129376.	8.2	78
21	Effects of Oxidation <i>in Vitro</i> on Structures and Functions of Myofibrillar Protein from Beef Muscles. Journal of Agricultural and Food Chemistry, 2019, 67, 5866-5873.	5.2	74
22	Changes in meat quality of ovine longissimus dorsi muscle in response to repeated freeze and thaw. Meat Science, 2012, 92, 619-626.	5.5	71
23	Changes of intramuscular phospholipids and free fatty acids during the processing of Nanjing dry-cured duck. Food Chemistry, 2008, 110, 279-284.	8.2	67
24	Effect of final cooked temperature on tenderness, protein solubility and microstructure of duck breast muscle. LWT - Food Science and Technology, 2013, 51, 266-274.	5.2	65
25	Influence of ultrasound-assisted sodium bicarbonate marination on the curing efficiency of chicken breast meat. Ultrasonics Sonochemistry, 2020, 60, 104808.	8.2	65
26	Evaluation of protein structural changes and water mobility in chicken liver paste batters prepared with plant oil substituting pork back-fat combined with pre-emulsification. Food Chemistry, 2016, 196, 388-395.	8.2	64
27	Gallic Acid-Aided Cross-Linking of Myofibrillar Protein Fabricated Soluble Aggregates for Enhanced Thermal Stability and a Tunable Colloidal State. Journal of Agricultural and Food Chemistry, 2020, 68, 11535-11544.	5.2	62
28	Technological demands of meat processing–An Asian perspective. Meat Science, 2017, 132, 35-44.	5.5	60
29	High pressure processing alters water distribution enabling the production of reduced-fat and reduced-salt pork sausages. Meat Science, 2015, 102, 69-78.	5.5	59
30	High-pressure homogenization combined with sulfhydryl blockage by hydrogen peroxide enhance the thermal stability of chicken breast myofibrillar protein aqueous solution. Food Chemistry, 2019, 285, 31-38.	8.2	58
31	High post-mortem temperature combined with rapid glycolysis induces phosphorylase denaturation and produces pale and exudative characteristics in broiler Pectoralis major muscles. Meat Science, 2011, 89, 181-188.	5.5	56
32	The effect of meat processing methods on changes in disulfide bonding and alteration of protein structures: impact on protein digestion products. RSC Advances, 2018, 8, 17595-17605.	3.6	56
33	(-)-Epigallocatechin-3-gallate-mediated formation of myofibrillar protein emulsion gels under malondialdehyde-induced oxidative stress. Food Chemistry, 2019, 285, 139-146.	8.2	55
34	Effects of ultrasound frequency mode on myofibrillar protein structure and emulsifying properties. International Journal of Biological Macromolecules, 2020, 163, 1768-1779.	7.5	55
35	Influence of heat on protein degradation, ultrastructure and eating quality indicators of pork. Journal of the Science of Food and Agriculture, 2011, 91, 443-448.	3.5	53
36	Effects of smoking or baking procedures during sausage processing on the formation of heterocyclic amines measured using UPLC-MS/MS. Food Chemistry, 2019, 276, 195-201.	8.2	53

#	Article	IF	CITATIONS
37	pH-shifting encapsulation of curcumin in egg white protein isolate for improved dispersity, antioxidant capacity and thermal stability. Food Research International, 2020, 137, 109366.	6.2	53
38	Modification of myofibrillar protein functional properties prepared by various strategies: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 458-500.	11.7	52
39	High CO2-modified atmosphere packaging for extension of shelf-life of chilled yellow-feather broiler meat: A special breed in Asia. LWT - Food Science and Technology, 2015, 64, 1123-1129.	5.2	50
40	The effect of active caspase-3 on degradation of chicken myofibrillar proteins and structure of myofibrils. Food Chemistry, 2011, 128, 22-27.	8.2	48
41	Phenolic compounds in beer inhibit formation of polycyclic aromatic hydrocarbons from charcoal-grilled chicken wings. Food Chemistry, 2019, 294, 578-586.	8.2	47
42	Overheating induced structural changes of type I collagen and impaired the protein digestibility. Food Research International, 2020, 134, 109225.	6.2	47
43	Application of high-pressure treatment improves the in vitro protein digestibility of gel-based meat product. Food Chemistry, 2020, 306, 125602.	8.2	45
44	High-Meat-Protein High-Fat Diet Induced Dysbiosis of Gut Microbiota and Tryptophan Metabolism in Wistar Rats. Journal of Agricultural and Food Chemistry, 2020, 68, 6333-6346.	5.2	45
45	Ultrasound-assisted covalent reaction of myofibrillar protein: The improvement of functional properties and its potential mechanism. Ultrasonics Sonochemistry, 2021, 76, 105652.	8.2	45
46	Real meat and plant-based meat analogues have different in vitro protein digestibility properties. Food Chemistry, 2022, 387, 132917.	8.2	45
47	Effect of Heat-Induced Changes of Connective Tissue and Collagen on Meat Texture Properties of Beef <i>Semitendinosus</i> Muscle. International Journal of Food Properties, 2011, 14, 381-396.	3.0	44
48	Proteome Analysis Using Isobaric Tags for Relative and Absolute Analysis Quantitation (iTRAQ) Reveals Alterations in Stress-Induced Dysfunctional Chicken Muscle. Journal of Agricultural and Food Chemistry, 2017, 65, 2913-2922.	5.2	43
49	Bacterial Community and Spoilage Profiles Shift in Response to Packaging in Yellow-Feather Broiler, a Highly Popular Meat in Asia. Frontiers in Microbiology, 2017, 8, 2588.	3.5	43
50	Effects of ultrafine comminution treatment on gelling properties of myofibrillar proteins from chicken breast. Food Hydrocolloids, 2019, 97, 105199.	10.7	43
51	Potential Biomarker of Myofibrillar Protein Oxidation in Raw and Cooked Ham: 3-Nitrotyrosine Formed by Nitrosation. Journal of Agricultural and Food Chemistry, 2015, 63, 10957-10964.	5.2	42
52	<scp>l</scp> â€histidine improves water retention of heatâ€induced gel of chicken breast myofibrillar proteins in low ionic strength solution. International Journal of Food Science and Technology, 2016, 51, 1195-1203.	2.7	41
53	Influence of stewing time on the texture, ultrastructure and <i>inÂvitro</i> digestibility of meat from the yellowâ€feathered chicken breed. Animal Science Journal, 2018, 89, 474-482.	1.4	41
54	Raspberry Supplementation Improves Insulin Signaling and Promotes Brownâ€Like Adipocyte Development in White Adipose Tissue of Obese Mice. Molecular Nutrition and Food Research, 2018, 62, 1701035.	3.3	40

#	Article	IF	CITATIONS
55	Comparative proteomic analysis of proteins associated with water holding capacity in goose muscles. Food Research International, 2019, 116, 354-361.	6.2	39
56	Changes in protein structures to improve the rheology and texture of reduced-fat sausages using high pressure processing. Meat Science, 2016, 121, 79-87.	5.5	37
57	A comparative study of functional properties of normal and wooden breast broiler chicken meat with NaCl addition. Poultry Science, 2017, 96, 3473-3481.	3.4	37
58	Influence of extreme alkaline pH induced unfolding and aggregation on PSE-like chicken protein edible film formation. Food Chemistry, 2020, 319, 126574.	8.2	37
59	Trace the difference driven by unfolding-refolding pathway of myofibrillar protein: Emphasizing the changes on structural and emulsion properties. Food Chemistry, 2022, 367, 130688.	8.2	37
60	Use of low-field nuclear magnetic resonance to characterize water properties in frozen chicken breasts thawed under high pressure. European Food Research and Technology, 2014, 239, 183-188.	3.3	36
61	Structural and solubility properties of pale, soft and exudative (PSE)-like chicken breast myofibrillar protein: Effect of glycosylation. LWT - Food Science and Technology, 2018, 95, 209-215.	5.2	36
62	Chicken breast quality – normal, pale, soft and exudative (<scp>PSE</scp>) and woody – influences the functional properties of meat batters. International Journal of Food Science and Technology, 2018, 53, 654-664.	2.7	36
63	Different physicochemical, structural and digestibility characteristics of myofibrillar protein from PSE and normal pork before and after oxidation. Meat Science, 2016, 121, 228-237.	5.5	35
64	Effects of different ultrasound frequencies on the structure, rheological and functional properties of myosin: Significance of quorum sensing. Ultrasonics Sonochemistry, 2020, 69, 105268.	8.2	35
65	Phosphoproteome analysis of sarcoplasmic and myofibrillar proteins in bovine longissimus muscle in response to postmortem electrical stimulation. Food Chemistry, 2015, 175, 197-202.	8.2	34
66	Inhibition of interaction between epigallocatechin-3-gallate and myofibrillar protein by cyclodextrin derivatives improves gel quality under oxidative stress. Food Research International, 2018, 108, 8-17.	6.2	34
67	Specific Microbiota Dynamically Regulate the Bidirectional Gut–Brain Axis Communications in Mice Fed Meat Protein Diets. Journal of Agricultural and Food Chemistry, 2019, 67, 1003-1017.	5.2	34
68	Covalent chemical modification of myofibrillar proteins to improve their gelation properties: A systematic review. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 924-959.	11.7	34
69	Phenolic modification of myofibrillar protein enhanced by ultrasound: The structure of phenol matters. Food Chemistry, 2022, 386, 132662.	8.2	34
70	Dietary Protein Sources Differentially Affect the Growth of Akkermansia muciniphila and Maintenance of the Gut Mucus Barrier in Mice. Molecular Nutrition and Food Research, 2019, 63, 1900589.	3.3	32
71	Physiochemical properties, protein and metabolite profiles of muscle exudate of chicken meat affected by wooden breast myopathy. Food Chemistry, 2020, 316, 126271.	8.2	32
72	Effects of pulsed electric fields on the conformation and gelation properties of myofibrillar proteins isolated from pale, soft, exudative (PSE)-like chicken breast meat: A molecular dynamics study. Food Chemistry, 2021, 342, 128306.	8.2	32

#	Article	IF	CITATIONS
73	An injectable antibacterial chitosan-based cryogel with high absorbency and rapid shape recovery for noncompressible hemorrhage and wound healing. Biomaterials, 2022, 285, 121546.	11.4	32
74	Processed Meat Protein Promoted Inflammation and Hepatic Lipogenesis by Upregulating Nrf2/Keap1 Signaling Pathway in Glrx-Deficient Mice. Journal of Agricultural and Food Chemistry, 2019, 67, 8794-8809.	5.2	31
75	Physical properties, compositions and volatile profiles of Chinese dry-cured hams from different regions. Journal of Food Measurement and Characterization, 2020, 14, 492-504.	3.2	31
76	Chitosan‑sodium alginate-collagen/gelatin three-dimensional edible scaffolds for building a structured model for cell cultured meat. International Journal of Biological Macromolecules, 2022, 209, 668-679.	7.5	31
77	Highâ€pressure processingâ€induced conformational changes during heating affect water holding capacity of myosin gel. International Journal of Food Science and Technology, 2017, 52, 724-732.	2.7	30
78	Effect of freezing on electrical properties and quality of thawed chicken breast meat. Asian-Australasian Journal of Animal Sciences, 2017, 30, 569-575.	2.4	30
79	Use of an isoelectric solubilization/precipitation process to modify the functional properties of PSE (pale, soft, exudative)-like chicken meat protein: A mechanistic approach. Food Chemistry, 2018, 248, 201-209.	8.2	30
80	Inhibition of Epigallocatechin-3-gallate/Protein Interaction by Methyl-β-cyclodextrin in Myofibrillar Protein Emulsion Gels under Oxidative Stress. Journal of Agricultural and Food Chemistry, 2018, 66, 8094-8103.	5.2	30
81	Effect of transportation and preâ€slaughter water shower spray with resting on AMPâ€activated protein kinase, glycolysis and meat quality of broilers during summer. Animal Science Journal, 2016, 87, 299-307.	1.4	29
82	Effect of Sous-vide cooking on the quality and digestion characteristics of braised pork. Food Chemistry, 2022, 375, 131683.	8.2	29
83	Applications of high pressure to pre-rigor rabbit muscles affect the water characteristics of myosin gels. Food Chemistry, 2018, 240, 59-66.	8.2	28
84	Physicochemical and microstructural attributes of marinated chicken breast influenced by breathing ultrasonic tumbling. Ultrasonics Sonochemistry, 2020, 64, 105022.	8.2	28
85	Effect of high intensity ultrasound on the gelation properties of wooden breast meat with different NaCl contents. Food Chemistry, 2021, 347, 129031.	8.2	28
86	Effect of salt content on gelation of normal and wooden breast myopathy chicken <i>pectoralis major</i> meat batters. International Journal of Food Science and Technology, 2017, 52, 2068-2077.	2.7	27
87	Effect of pH on heat-induced gelation of duck blood plasma protein. Food Hydrocolloids, 2014, 35, 324-331.	10.7	26
88	Applications of high pressure to pre-rigor rabbit muscles affect the functional properties associated with heat-induced gelation. Meat Science, 2017, 129, 176-184.	5.5	26
89	New insights into the ultrasound impact on covalent reactions of myofibrillar protein. Ultrasonics Sonochemistry, 2022, 84, 105973.	8.2	26
90	Oxidative stability of isoelectric solubilization/precipitation-isolated PSE-like chicken protein. Food Chemistry, 2019, 283, 646-655.	8.2	24

#	Article	IF	CITATIONS
91	Comparison of the interfacial properties of native and refolded myofibrillar proteins subjected to pH-shifting. Food Chemistry, 2022, 380, 131734.	8.2	24
92	Effect of MTGase on silver carp myofibrillar protein gelation behavior after peroxidation induced by peroxyl radicals. Food Chemistry, 2021, 349, 129066.	8.2	23
93	Continuous cyclic wet heating glycation to prepare myofibrillar protein-glucose conjugates: A study on the structures, solubility and emulsifying properties. Food Chemistry, 2022, 388, 133035.	8.2	23
94	Development of interspecific competition models for the growth of Listeria monocytogenes and Lactobacillus on vacuum-packaged chilled pork by quantitative real-time PCR. Food Research International, 2014, 64, 626-633.	6.2	22
95	Effects of Phenolic Acid Marinades on the Formation of Polycyclic Aromatic Hydrocarbons in Charcoal-Grilled Chicken Wings. Journal of Food Protection, 2019, 82, 684-690.	1.7	22
96	Effect of oxidation on the process of thermal gelation of chicken breast myofibrillar protein. Food Chemistry, 2022, 384, 132368.	8.2	22
97	Near-Freezing Temperature Storage (â^2C) for Extension of Shelf Life of Chilled Yellow-Feather Broiler Meat: A Special Breed in Asia. Journal of Food Processing and Preservation, 2016, 40, 340-347.	2.0	21
98	Improved gelation functionalities of myofibrillar protein from pale, soft and exudative chicken breast meat by nonenzymatic glycation with glucosamine. International Journal of Food Science and Technology, 2018, 53, 2006-2014.	2.7	21
99	Phosphorproteome Changes of Myofibrillar Proteins at Early Post-mortem Time in Relation to Pork Quality As Affected by Season. Journal of Agricultural and Food Chemistry, 2015, 63, 10287-10294.	5.2	20
100	The Effect of Breed and Age on the Growth Performance, Carcass Traits and Metabolic Profile in Breast Muscle of Chinese Indigenous Chickens. Foods, 2022, 11, 483.	4.3	20
101	Application of near infrared reflectance (<scp>NIR</scp>) spectroscopy to identify potential <scp>PSE</scp> meat. Journal of the Science of Food and Agriculture, 2016, 96, 3148-3156.	3.5	19
102	Stability improvement of reduced-fat reduced-salt meat batter through modulation of secondary and tertiary protein structures by means of high pressure processing. Meat Science, 2021, 176, 108439.	5.5	19
103	Effect of gastrointestinal alterations mimicking elderly conditions on in vitro digestion of meat and soy proteins. Food Chemistry, 2022, 383, 132465.	8.2	19
104	Effect of wooden breast myopathy on water-holding capacity and rheological and gelling properties of chicken broiler breast batters. Poultry Science, 2020, 99, 3742-3751.	3.4	18
105	The gelation properties of myofibrillar proteins prepared with malondialdehyde and (â^')-epigallocatechin-3-gallate. Food Chemistry, 2021, 340, 127817.	8.2	18
106	Synergistic effect of preheating and different power output high-intensity ultrasound on the physicochemical, structural, and gelling properties of myofibrillar protein from chicken wooden breast. Ultrasonics Sonochemistry, 2022, 86, 106030.	8.2	18
107	Effects of different cooking regimes on the microstructure and tenderness of duck breast muscle. Journal of the Science of Food and Agriculture, 2013, 93, 1979-1985.	3.5	17
108	The gut microbiota in young and middle-aged rats showed different responses to chicken protein in their diet. BMC Microbiology, 2016, 16, 281.	3.3	17

#	Article	IF	CITATIONS
109	High-pressure effects on the molecular aggregation and physicochemical properties of myosin in relation to heat gelation. Food Research International, 2017, 99, 413-418.	6.2	17
110	Alkaline pH-dependent thermal aggregation of chicken breast myosin: formation of soluble aggregates. CYTA - Journal of Food, 2018, 16, 765-775.	1.9	17
111	Effects of chicken myofibrillar protein concentration on protein oxidation and water holding capacity of its heat-induced gels. Journal of Food Measurement and Characterization, 2018, 12, 2302-2312.	3.2	17
112	Dual role (promotion and inhibition) of transglutaminase in mediating myoï¬brillar protein gelation under malondialdehyde-induced oxidative stress. Food Chemistry, 2021, 353, 129453.	8.2	17
113	Changes of Molecular Forces During Thermo-Gelling of Protein Isolated from PSE-Like Chicken Breast by Various Isoelectric Solubilization/Precipitation Extraction Strategies. Food and Bioprocess Technology, 2017, 10, 1240-1247.	4.7	16
114	Study on retrogradation of maize starch–flaxseed gum mixture under various storage temperatures. International Journal of Food Science and Technology, 2018, 53, 1287-1293.	2.7	16
115	Influence of hydrothermal treatment on the structural and digestive changes of actomyosin. Journal of the Science of Food and Agriculture, 2019, 99, 6209-6218.	3.5	15
116	Isoelectric solubilization/precipitation processing modified sarcoplasmic protein from pale, soft, exudative-like chicken meat. Food Chemistry, 2019, 287, 1-10.	8.2	15
117	Processing Properties and Improvement of Pale, Soft, and Exudative-Like Chicken Meat: a Review. Food and Bioprocess Technology, 2020, 13, 1280-1291.	4.7	15
118	The effect of in-package cold plasma on the formation of polycyclic aromatic hydrocarbons in charcoal-grilled beef steak with different oils or fats. Food Chemistry, 2022, 371, 131384.	8.2	15
119	Colorimetric determination of Salmonella typhimurium based on aptamer recognition. Analytical Methods, 2016, 8, 6560-6565.	2.7	14
120	Comparative proteomic analysis of longissimus dorsi muscle in immuno- and surgically castrated male pigs. Food Chemistry, 2016, 199, 885-892.	8.2	14
121	Influence of biofilm surface layer protein A (<scp>BslA</scp>) on the gel structure of myofibril protein from chicken breast. Journal of the Science of Food and Agriculture, 2017, 97, 4712-4720.	3.5	14
122	Edible quality of softâ€boiled chicken processing with chilled carcass was better than that of hotâ€fresh carcass. Food Science and Nutrition, 2019, 7, 797-804.	3.4	14
123	The changes and relationship of structure and functional properties of rabbit myosin during heat-induced gelation. CYTA - Journal of Food, 2015, 13, 63-68.	1.9	13
124	Optimization of textural properties of reduced-fat and reduced-salt emulsion-type sausages treated with high pressure using a response surface methodology. Innovative Food Science and Emerging Technologies, 2016, 33, 162-169.	5.6	13
125	Superchilled storage (â^2.5 ± 1°C) extends the retention of tasteâ€active and volatile compounds of yellowâ€feather chicken soup. Animal Science Journal, 2018, 89, 906-918.	1.4	13
126	A Short-Term Feeding of Dietary Casein Increases Abundance of Lactococcus lactis and Upregulates Gene Expression Involving Obesity Prevention in Cecum of Young Rats Compared With Dietary Chicken Protein. Frontiers in Microbiology, 2019, 10, 2411.	3.5	13

#	Article	IF	CITATIONS
127	"Rigid―structure is a key determinant for the low digestibility of myoglobin. Food Chemistry: X, 2020, 7, 100094.	4.3	13
128	Temperature-dependent in vitro digestion properties of isoelectric solubilization/precipitation (ISP)-isolated PSE-like chicken protein. Food Chemistry, 2021, 343, 128501.	8.2	13
129	Effects of sodium tripolyphosphate on functional properties of lowâ€salt singleâ€step highâ€pressure processed chicken breast sausage. International Journal of Food Science and Technology, 2016, 51, 2106-2113.	2.7	12
130	Incorporated glucosamine adversely affects the emulsifying properties of whey protein isolate polymerized by transglutaminase. Journal of Dairy Science, 2017, 100, 3413-3423.	3.4	12
131	Celation properties of goose liver protein recovered by isoelectric solubilisation/precipitation process. International Journal of Food Science and Technology, 2018, 53, 356-364.	2.7	12
132	High-resolution melting analysis: a promising molecular method for meat traceability. European Food Research and Technology, 2014, 239, 473-480.	3.3	11
133	A comparative study of heat shock protein 70 in normal and PSE (pale, soft, exudative)-like muscle from broiler chickens. Poultry Science, 2016, 95, 2391-2396.	3.4	11
134	Waterâ€soluble myofibrillar proteins prepared by highâ€pressure homogenisation: a comparison study on the composition and functionality. International Journal of Food Science and Technology, 2017, 52, 2334-2342.	2.7	11
135	Potential roles for glucagon-like peptide-17–36 amide and cholecystokinin in anorectic response to the trichothecene mycotoxin T-2 toxin. Ecotoxicology and Environmental Safety, 2018, 153, 181-187.	6.0	11
136	Influence of salting process on the structure and in vitro digestibility of actomyosin. Journal of Food Science and Technology, 2020, 57, 1763-1773.	2.8	11
137	iTRAQ-based proteomic analysis of duck muscle related to lipid oxidation. Poultry Science, 2021, 100, 101029.	3.4	11
138	Insight into the effect of charge regulation on the binding mechanism of curcumin to myofibrillar protein. Food Chemistry, 2021, 352, 129395.	8.2	11
139	Effects of quercetin on tenderness, apoptotic and autophagy signalling in chickens during post-mortem ageing. Food Chemistry, 2022, 383, 132409.	8.2	11
140	Analysis of ERIC-PCR genomic polymorphism of Salmonella isolates from chicken slaughter line. European Food Research and Technology, 2014, 239, 543-548.	3.3	10
141	Inhibition of Heat-Induced Flocculation of Myosin-Based Emulsions through Steric Repulsion by Conformational Adaptation-Enhanced Interfacial Protein with an Alkaline pH-Shifting-Driven Method. Langmuir, 2018, 34, 8848-8856.	3.5	10
142	Effect of stewing time on fatty acid composition, textural properties and microstructure of porcine subcutaneous fat from various anatomical locations. Journal of Food Composition and Analysis, 2022, 105, 104240.	3.9	10
143	Nano Filling Effect of Nonmeat Protein Emulsion on the Rheological Property of Myofibrillar Protein Gel. Foods, 2022, 11, 629.	4.3	10
144	Comparative study on the in vitro digestibility of chicken protein after different modifications. Food Chemistry, 2022, 385, 132652.	8.2	10

#	Article	IF	CITATIONS
145	Changes in Chemical-Physical Index and Microstructure During Dry-cured Duck Processing. Journal of Poultry Science, 2014, 51, 220-226.	1.6	9
146	Contribution of Highâ€Pressureâ€Induced Protein Modifications to the Microenvironment and Functional Properties of Rabbit Meat Sausages. Journal of Food Science, 2017, 82, 1357-1368.	3.1	9
147	Negative impacts <i>o</i> f <i>in-vitro</i> oxidative stress on the quality of heat-induced myofibrillar protein gelation during refrigeration. International Journal of Food Properties, 2018, 21, 2205-2217.	3.0	9
148	Phosphoproteome analysis of sarcoplasmic and myofibrillar proteins in stress-induced dysfunctional broiler pectoralis major muscle. Food Chemistry, 2020, 319, 126531.	8.2	9
149	Sequential changes in antioxidant activity and structure of curcumin-myofibrillar protein nanocomplex during in vitro digestion. Food Chemistry, 2022, 382, 132331.	8.2	9
150	The Effect of µ/m alpain on Protein Degradation of Chicken Breast Meat. Journal of Food Science, 2019, 84, 1054-1059.	3.1	8
151	Investigation of microbial contamination in a chicken slaughterhouse environment. Journal of Food Science, 2021, 86, 3598-3610.	3.1	8
152	Interactions between the protein-epigallocatechin gallate complex and nanocrystalline cellulose: A systematic study. Food Chemistry, 2022, 387, 132791.	8.2	8
153	Effect of Sodium Chloride on the Properties of Readyâ€ŧoâ€Eat Pressureâ€Induced Gelâ€Type Chicken Meat Products. Journal of Food Process Engineering, 2017, 40, e12299.	2.9	7
154	High intake of chicken and pork proteins aggravates high-fat-diet-induced inflammation and disorder of hippocampal glutamatergic system. Journal of Nutritional Biochemistry, 2020, 85, 108487.	4.2	7
155	Enhanced cytokine expression and upregulation of inflammatory signaling pathways in broiler chickens affected by wooden breast myopathy. Journal of the Science of Food and Agriculture, 2021, 101, 279-286.	3.5	7
156	Rheological and Nuclear Magnetic Resonance Study on Heatâ€Induced Gel Properties of Spentâ€Hen Myofibrillar Protein Affected by Porcine Plasma Protein. Journal of Texture Studies, 2014, 45, 195-205.	2.5	6
157	Effects of water-misting spray combined with forced ventilation on heat induced meat gelation in broiler after summer transport. Poultry Science, 2016, 95, 2441-2448.	3.4	6
158	Innovative Characterization Based on Stress Relaxation and Creep to Reveal the Tenderizing Effect of Ultrasound on Wooden Breast. Foods, 2021, 10, 195.	4.3	6
159	Effects of waterâ€misting sprays with forced ventilation on post mortem glycolysis, AMPâ€activated protein kinase and meat quality of broilers after transport during summer. Animal Science Journal, 2016, 87, 718-728.	1.4	5
160	Effects of preâ€slaughter showering and ventilation on stress, meat quality and metabolite concentrations of broilers in summer. Animal Science Journal, 2016, 87, 293-298.	1.4	5
161	Influence of Gamma Irradiation on Porcine Serum Albumin Structural Properties and Allergenicity. Journal of AOAC INTERNATIONAL, 2018, 101, 529-535.	1.5	5
162	Hydrophobicâ€assembled curcumin–porcine plasma protein complex affected by pH. International Journal of Food Science and Technology, 2019, 54, 891-897.	2.7	5

#	Article	IF	CITATIONS
163	Water-spraying forced ventilation during holding improves the water holding capacity, impedance, and microstructure of breast meat from summer-transported broiler chickens. Poultry Science, 2020, 99, 1744-1749.	3.4	5
164	Evaluation of antioxidant property of heat shock protein 90 from duck muscle. Animal Bioscience, 2021, 34, 724-733.	2.0	5
165	Correlation between instrumental stress and oral processing property of chicken broiler breast under wooden breast myopathy. International Journal of Food Science and Technology, 2021, 56, 5518-5532.	2.7	5
166	Modeling the Survival of <i>S almonella</i> on Slice Cooked Ham as a Function of Apple Skin Polyphenols, Acetic Acid, Oregano Essential Oil and Carvacrol. Journal of Food Processing and Preservation, 2015, 39, 2371-2378.	2.0	4
167	Conformational and rheological changes of high-pressure processing treated rabbit myosin subfragments during heating. LWT - Food Science and Technology, 2020, 122, 108994.	5.2	4
168	Protein Glycosylation and Gut Microbiota Utilization Can Limit the In Vitro and In Vivo Metabolic Cellular Incorporation of Neu5Gc. Molecular Nutrition and Food Research, 2022, 66, e2100615.	3.3	4
169	Recovery of emulsifying and gelling protein from waste chicken exudate by using a sustainable pH-shifting treatment. Food Chemistry, 2022, 387, 132886.	8.2	4
170	Prediction of yield of retail cuts for native and crossbred Chinese Yellow cattle. Animal Science Journal, 2007, 78, 440-444.	1.4	3
171	Impact of High Hydrostatic Pressure Treatment on Microbial Communities in Chinese Water-Boiled Salted Duck. Journal of Food Protection, 2014, 77, 1142-1147.	1.7	3
172	Optimization of an Acidified Sodium Chlorite Solution for Reducing Pathogenic Bacteria and Maintaining Sensory Characteristics of Poultry Meat in Simulation Slaughter Process. Journal of Food Processing and Preservation, 2014, 38, 397-405.	2.0	3
173	Response surface model for the reduction of <i>Salmonella</i> biofilm on stainless steel with lactic acid, ethanol, and chlorine as controlling factors. Journal of Food Safety, 2017, 37, e12332.	2.3	3
174	Comparison on the emulsion properties of normal colour and discolouration fresh chicken liver. Italian Journal of Animal Science, 2020, 19, 551-559.	1.9	3
175	A Colorimetric Ag+ Probe for Food Real-Time Visual Monitoring. Nanomaterials, 2022, 12, 1389.	4.1	3
176	A New Method for Characterizing Mechanical Properties of Meat Product under Stress-Relaxation Based on Gaussian Curve-Fitting. International Journal of Food Properties, 2015, 18, 2571-2583.	3.0	2
177	Complete Genome Sequence of Salmonella enterica Serovar Enteritidis NCM 61, with High Potential for Biofilm Formation, Isolated from Meat-Related Sources. Microbiology Resource Announcements, 2019, 8, .	0.6	2
178	Impact of Phytophenols on Myofibrillar Proteins: Revisit the Interaction Scenarios Inspired for Meat Products Innovation. Food Reviews International, 2023, 39, 5637-5665.	8.4	2
179	Effect of High Hydrostatic Pressure Combined with Moderate Heat to Inactivate Pressureâ€Resistant Bacteria in Waterâ€Boiled Salted Duck. Journal of Food Science, 2015, 80, M1336-42.	3.1	1
180	Application of Nondestructive and Low ost Impedance Technology to Determine the Effect of Curing Degree on Meat Quality. Journal of Food Process Engineering, 2017, 40, e12294.	2.9	1

#	Article	IF	CITATIONS
181	Proteomic Analysis of the Protective Effect of Eriodictyol on Benzo(a)pyrene-Induced Caco-2 Cytotoxicity. Frontiers in Nutrition, 2022, 9, 839364.	3.7	1