Parikshit Bagchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6231626/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A specific EMC subunit supports Dengue virus infection by promoting virus membrane fusion essential for cytosolic genome delivery. PLoS Pathogens, 2022, 18, e1010717.	4.7	1
2	Editorial: Cell Organelle Exploitation by Viruses During Infection. Frontiers in Microbiology, 2021, 12, 675152.	3.5	3
3	Dengue Virus Infection: A Tale of Viral Exploitations and Host Responses. Viruses, 2021, 13, 1967.	3.3	37
4	Lunapark-dependent formation of a virus-induced ER exit site contains multi-tubular ER junctions that promote viral ER-to-cytosol escape. Cell Reports, 2021, 37, 110077.	6.4	5
5	Endoplasmic reticulum in viral infection. International Review of Cell and Molecular Biology, 2020, 350, 265-284.	3.2	13
6	Selective EMC subunits act as molecular tethers of intracellular organelles exploited during viral entry. Nature Communications, 2020, 11, 1127.	12.8	17
7	ER functions are exploited by viruses to support distinct stages of their life cycle. Biochemical Society Transactions, 2020, 48, 2173-2184.	3.4	12
8	SGTA-Dependent Regulation of Hsc70 Promotes Cytosol Entry of Simian Virus 40 from the Endoplasmic Reticulum. Journal of Virology, 2017, 91, .	3.4	29
9	Research Highlight: Revealing molecular mechanism behind the effect of Zika Virus infection on neurodevelopment. Postdoc Journal, 2017, 5, .	0.4	0
10	Opportunistic intruders: how viruses orchestrate ER functions to infect cells. Nature Reviews Microbiology, 2016, 14, 407-420.	28.6	91
11	EMC1-dependent stabilization drives membrane penetration of a partially destabilized non-enveloped virus. ELife, 2016, 5, .	6.0	52
12	A Non-enveloped Virus Hijacks Host Disaggregation Machinery to Translocate across the Endoplasmic Reticulum Membrane. PLoS Pathogens, 2015, 11, e1005086.	4.7	45
13	The Endoplasmic Reticulum Membrane J Protein C18 Executes a Distinct Role in Promoting Simian Virus 40 Membrane Penetration. Journal of Virology, 2015, 89, 4058-4068.	3.4	37
14	MAVS Protein Is Attenuated by Rotavirus Nonstructural Protein 1. PLoS ONE, 2014, 9, e92126.	2.5	32
15	Rotavirus NSP1 inhibits interferon induced non-canonical NFκB activation by interacting with TNF receptor associated factor 2. Virology, 2013, 444, 41-44.	2.4	30
16	Molecular Mechanism behind Rotavirus NSP1-Mediated PI3 Kinase Activation: Interaction between NSP1 and the p85 Subunit of PI3 Kinase. Journal of Virology, 2013, 87, 2358-2362.	3.4	22
17	Identification of common human host genes involved in pathogenesis of different rotavirus strains: An attempt to recognize probable antiviral targets. Virus Research, 2012, 169, 144-153.	2.2	27
18	Surveillance and molecular characterization of rotavirus strains circulating in Manipur, North-Eastern India: Increasing prevalence of emerging G12 strains. Infection, Genetics and Evolution, 2010, 10, 311-320.	2.3	68

#	Article	IF	CITATIONS
19	Rotavirus Nonstructural Protein 1 Suppresses Virus-Induced Cellular Apoptosis To Facilitate Viral Growth by Activating the Cell Survival Pathways during Early Stages of Infection. Journal of Virology, 2010, 84, 6834-6845.	3.4	83
20	Computational identification of the post-translational modification sites and the functional family prediction reveals possible moonlighting role of rotaviral proteins. Bioinformation, 2010, 4, 448-451.	0.5	12
21	The molecular chaperone heat shock protein-90 positively regulates rotavirus infection. Virology, 2009, 391, 325-333.	2.4	63
22	Full genomic analysis of a human group A rotavirus G9P[6] strain from Eastern India provides evidence for porcine-to-human interspecies transmission. Archives of Virology, 2009, 154, 733-746.	2.1	51