Parikshit Bagchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6231626/publications.pdf

Version: 2024-02-01

567281 713466 22 730 15 21 citations h-index g-index papers 24 24 24 914 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Opportunistic intruders: how viruses orchestrate ER functions to infect cells. Nature Reviews Microbiology, 2016, 14, 407-420.	28.6	91
2	Rotavirus Nonstructural Protein 1 Suppresses Virus-Induced Cellular Apoptosis To Facilitate Viral Growth by Activating the Cell Survival Pathways during Early Stages of Infection. Journal of Virology, 2010, 84, 6834-6845.	3.4	83
3	Surveillance and molecular characterization of rotavirus strains circulating in Manipur, North-Eastern India: Increasing prevalence of emerging G12 strains. Infection, Genetics and Evolution, 2010, 10, 311-320.	2.3	68
4	The molecular chaperone heat shock protein-90 positively regulates rotavirus infection. Virology, 2009, 391, 325-333.	2.4	63
5	EMC1-dependent stabilization drives membrane penetration of a partially destabilized non-enveloped virus. ELife, 2016, 5, .	6.0	52
6	Full genomic analysis of a human group A rotavirus G9P[6] strain from Eastern India provides evidence for porcine-to-human interspecies transmission. Archives of Virology, 2009, 154, 733-746.	2.1	51
7	A Non-enveloped Virus Hijacks Host Disaggregation Machinery to Translocate across the Endoplasmic Reticulum Membrane. PLoS Pathogens, 2015, 11, e1005086.	4.7	45
8	The Endoplasmic Reticulum Membrane J Protein C18 Executes a Distinct Role in Promoting Simian Virus 40 Membrane Penetration. Journal of Virology, 2015, 89, 4058-4068.	3.4	37
9	Dengue Virus Infection: A Tale of Viral Exploitations and Host Responses. Viruses, 2021, 13, 1967.	3.3	37
10	MAVS Protein Is Attenuated by Rotavirus Nonstructural Protein 1. PLoS ONE, 2014, 9, e92126.	2.5	32
11	Rotavirus NSP1 inhibits interferon induced non-canonical NFκB activation by interacting with TNF receptor associated factor 2. Virology, 2013, 444, 41-44.	2.4	30
12	SGTA-Dependent Regulation of Hsc70 Promotes Cytosol Entry of Simian Virus 40 from the Endoplasmic Reticulum. Journal of Virology, 2017, 91, .	3.4	29
13	Identification of common human host genes involved in pathogenesis of different rotavirus strains: An attempt to recognize probable antiviral targets. Virus Research, 2012, 169, 144-153.	2.2	27
14	Molecular Mechanism behind Rotavirus NSP1-Mediated PI3 Kinase Activation: Interaction between NSP1 and the p85 Subunit of PI3 Kinase. Journal of Virology, 2013, 87, 2358-2362.	3.4	22
15	Selective EMC subunits act as molecular tethers of intracellular organelles exploited during viral entry. Nature Communications, 2020, $11,1127$.	12.8	17
16	Endoplasmic reticulum in viral infection. International Review of Cell and Molecular Biology, 2020, 350, 265-284.	3.2	13
17	ER functions are exploited by viruses to support distinct stages of their life cycle. Biochemical Society Transactions, 2020, 48, 2173-2184.	3.4	12
18	Computational identification of the post-translational modification sites and the functional family prediction reveals possible moonlighting role of rotaviral proteins. Bioinformation, 2010, 4, 448-451.	0.5	12

#	Article	lF	CITATIONS
19	Lunapark-dependent formation of a virus-induced ER exit site contains multi-tubular ER junctions that promote viral ER-to-cytosol escape. Cell Reports, 2021, 37, 110077.	6.4	5
20	Editorial: Cell Organelle Exploitation by Viruses During Infection. Frontiers in Microbiology, 2021, 12, 675152.	3.5	3
21	A specific EMC subunit supports Dengue virus infection by promoting virus membrane fusion essential for cytosolic genome delivery. PLoS Pathogens, 2022, 18, e1010717.	4.7	1
22	Research Highlight: Revealing molecular mechanism behind the effect of Zika Virus infection on neurodevelopment. Postdoc Journal, 2017, 5, .	0.4	0