
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6231505/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Yakutat terrane: Dramatic change in crustal thickness across the Transition fault, Alaska. Geology, 2010, 38, 895-898.	4.4	129
2	Crustal structure of the Yakutat terrane and the evolution of subduction and collision in southern Alaska. Journal of Geophysical Research, 2012, 117, .	3.3	121
3	Inversion of a hyper-extended rifted margin in the southern Central Range of Taiwan. Geology, 2013, 41, 871-874.	4.4	114
4	Rifting and magmatism in the northeastern South China Sea from wideâ€angle tomography and seismic reflection imaging. Journal of Geophysical Research: Solid Earth, 2014, 119, 2305-2323.	3.4	113
5	Crustal structure and inferred rifting processes in the northeast South China Sea. Marine and Petroleum Geology, 2014, 58, 612-626.	3.3	100
6	Composition and structure of the central Aleutian island arc from arc-parallel wide-angle seismic data. Geochemistry, Geophysics, Geosystems, 2004, 5, n/a-n/a.	2.5	98
7	Seismic velocity structure of the rifted margin of the eastern Grand Banks of Newfoundland, Canada. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	93
8	A two-dimensional tomographic study of the Clipperton transform fault. Journal of Geophysical Research, 1998, 103, 17885-17899.	3.3	89
9	Inferring crustal structure in the Aleutian island arc from a sparse wide-angle seismic data set. Geochemistry, Geophysics, Geosystems, 2004, 5, .	2.5	85
10	Extension of continental crust at the margin of the eastern Grand Banks, Newfoundland. Tectonophysics, 2009, 468, 131-148.	2.2	75
11	Crustalâ€scale seismic profiles across the Manila subduction zone: The transition from intraoceanic subduction to incipient collision. Journal of Geophysical Research: Solid Earth, 2014, 119, 1-17.	3.4	75
12	Continental crust under compression: A seismic refraction study of South Island Geophysical Transect I, South Island, New Zealand. Journal of Geophysical Research, 2004, 109, .	3.3	73
13	Deep crustal structure of the northeastern Gulf of Mexico: Implications for rift evolution and seafloor spreading. Journal of Geophysical Research: Solid Earth, 2014, 119, 6802-6822.	3.4	72
14	Deep crustal structure in the eastern Gulf of Mexico. Journal of Geophysical Research: Solid Earth, 2014, 119, 6782-6801.	3.4	66
15	Continental rifting and sediment infill in the northwestern Gulf of Mexico. Geology, 2015, 43, 631-634.	4.4	59
16	Decrease in oceanic crustal thickness since the breakup of Pangaea. Nature Geoscience, 2017, 10, 58-61.	12.9	58
17	Crustal accretion in the Manila trench accretionary wedge at the transition from subduction to mountain-building in Taiwan. Earth and Planetary Science Letters, 2013, 375, 430-440.	4.4	55
18	Cooperation among tectonic and surface processes in the St. Elias Range, Earth's highest coastal mountains. Geophysical Research Letters, 2015, 42, 5838-5846.	4.0	52

#	Article	IF	CITATIONS
19	Evidence for asymmetric nonvolcanic rifting and slow incipient oceanic accretion from seismic reflection data on the Newfoundland margin. Journal of Geophysical Research, 2006, 111, .	3.3	49
20	Hybrid shortest path and ray bending method for traveltime and raypath calculations. Geophysics, 2001, 66, 648-653.	2.6	48
21	Episodic magmatism and serpentinized mantle exhumation at an ultraslow-spreading centre. Nature Geoscience, 2018, 11, 444-448.	12.9	43
22	Threeâ€dimensional seismic imaging of the Blake Ridge methane hydrate province: Evidence for large, concentrated zones of gas hydrate and morphologically driven advection. Journal of Geophysical Research, 2008, 113, .	3.3	41
23	Constraining the maximum depth of brittle deformation at slow- and ultraslow-spreading ridges using microseismicity. Geology, 2019, 47, 1069-1073.	4.4	40
24	Seismic images of the Transition fault and the unstable Yakutat–Pacific–North American triple junction. Geology, 2013, 41, 571-574.	4.4	38
25	The role of frictional strength on plate coupling at the subduction interface. Geochemistry, Geophysics, Geosystems, 2012, 13, .	2.5	36
26	New geophysical constraints on a failed subduction initiation: The structure and potential evolution of the <scp>G</scp> agua <scp>R</scp> idge and <scp>H</scp> uatung <scp>B</scp> asin. Geochemistry, Geophysics, Geosystems, 2015, 16, 380-400.	2.5	35
27	Magmatic-tectonic conditions for hydrothermal venting on an ultraslow-spread oceanic core complex. Geology, 2017, 45, 839-842.	4.4	35
28	Incipient subduction at the contact with stretched continental crust: The Puysegur Trench. Earth and Planetary Science Letters, 2019, 520, 212-219.	4.4	34
29	Deep crustal structure of an arcâ€continent collision: Constraints from seismic traveltimes in central Taiwan and the Philippine Sea. Journal of Geophysical Research: Solid Earth, 2014, 119, 8397-8416.	3.4	28
30	The role of farfield tectonic stress in oceanic intraplate deformation, Gulf of Alaska. Journal of Geophysical Research: Solid Earth, 2013, 118, 1862-1872.	3.4	26
31	Active extension in Taiwan's precollision zone: A new model of plate bending in continental crust. Geology, 2012, 40, 831-834.	4.4	25
32	Moho interface beneath Yakutat terrane, southern Alaska. Journal of Geophysical Research: Solid Earth, 2013, 118, 5084-5097.	3.4	24
33	Recycling of depleted continental mantle by subduction and plumes at the Hikurangi Plateau large igneous province, southwestern Pacific Ocean. Geology, 2019, 47, 795-798.	4.4	21
34	The role of mantle melts in the transition from rifting to seafloor spreading offshore eastern North America. Earth and Planetary Science Letters, 2019, 525, 115756.	4.4	21
35	Crustal structure across the Costa Rican Volcanic Arc. Geochemistry, Geophysics, Geosystems, 2013, 14, 1087-1103.	2.5	20
36	Constraints on the composition of the Aleutian arc lower crust from <i>V_P</i> / <i>V_S</i> . Geophysical Research Letters, 2013, 40, 2579-2584.	4.0	20

#	Article	IF	CITATIONS
37	A lithospheric profile across northern Taiwan: from arc-continent collision to extension. Geophysical Journal International, 2016, 204, 331-346.	2.4	20
38	Stress transition from horizontal to vertical forces during subduction initiation. Nature Geoscience, 2022, 15, 149-155.	12.9	20
39	Limited Mantle Hydration by Bending Faults at the Middle America Trench. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020982.	3.4	18
40	Evidence for a Prolonged Continental Breakup Resulting From Slow Extension Rates at the Eastern North American Volcanic Rifted Margin. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB020093.	3.4	17
41	Strikeâ€Slip Enables Subduction Initiation Beneath a Failed Rift: New Seismic Constraints From Puysegur Margin, New Zealand. Tectonics, 2021, 40, e2020TC006436.	2.8	17
42	Subduction and accretion of sedimentary rocks in the Yakutat collision zone, St. Elias orogen, Gulf of Alaska. Earth and Planetary Science Letters, 2013, 381, 116-126.	4.4	16
43	Crustal structure of the flanks of the East Pacific Rise: Implications for overlapping spreading centers. Geophysical Research Letters, 1998, 25, 2213-2216.	4.0	15
44	A Bayesian 3-D linear gravity inversion for complex density distributions: application to the Puysegur subduction system. Geophysical Journal International, 2020, 223, 1899-1918.	2.4	15
45	The Eastern North American Margin Community Seismic Experiment: An Amphibious Active―and Passiveâ€Source Dataset. Seismological Research Letters, 2020, 91, 533-540.	1.9	15
46	Crustal Structure of the Northern Hikurangi Margin, New Zealand: Variable Accretion and Overthrusting Plate Strength Influenced by Rough Subduction. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021176.	3.4	12
47	Imaging a plate boundar using double-sided onshore-offshore seismic profiling. The Leading Edge, 2003, 22, 256-260.	0.7	11
48	Rapid sedimentation and overpressure in shallow sediments of the Bering Trough, offshore southern Alaska. Journal of Geophysical Research: Solid Earth, 2017, 122, 2457-2477.	3.4	10
49	Seismic structure and segmentation of the axial valley of the <scp>M</scp> idâ€ <scp>C</scp> ayman <scp>S</scp> preading <scp>C</scp> enter. Geochemistry, Geophysics, Geosystems, 2017, 18, 2149-2161.	2.5	10
50	A comparison between the transpressional plate boundaries of South Island, New Zealand, and southern California, USA: The Alpine and San Andreas Fault Systems. Geophysical Monograph Series, 2007, , 307-327.	0.1	9
51	Seismic investigation of an active ocean–continent transform margin: the interaction between the Swan Islands Fault Zone and the ultraslow-spreading Mid-Cayman Spreading Centre. Geophysical Journal International, 2019, 219, 159-184.	2.4	9
52	Seismic Evidence of Magmatic Rifting in the Offshore Taupo Volcanic Zone, New Zealand. Geophysical Research Letters, 2019, 46, 12949-12957.	4.0	9
53	Compressional and shearâ€wave velocity structure of the continentâ€ocean transition zone at the eastern Grand Banks, Newfoundland. Geophysical Research Letters, 2013, 40, 3014-3020.	4.0	8
54	Crustal Structure of the Hikurangi Margin From SHIRE Seismic Data and the Relationship Between Forearc Structure and Shallow Megathrust Slip Behavior. Geophysical Research Letters, 2022, 49, .	4.0	8

#	Article	IF	CITATIONS
55	A new mechanism for shape induced seismic anisotropy. Wave Motion, 1994, 20, 89-98.	2.0	7
56	Stratigraphic architecture of Solander Basin records Southern Ocean currents and subduction initiation beneath southwest New Zealand. Basin Research, 2021, 33, 403-426.	2.7	7
57	Slownessâ€weighted diffraction stack for migrating wideâ€angle seismic data in laterally varying media. Geophysics, 2004, 69, 1046-1052.	2.6	5
58	Seismic evidence for fluids in fault zones on top of the subducting Cocos Plate beneath Costa Rica. Geophysical Journal International, 2010, , .	2.4	5
59	Alongâ€strike structure of the <scp>C</scp> osta <scp>R</scp> ican convergent margin from seismic a refraction/reflection survey: Evidence for underplating beneath the inner forearc. Geochemistry, Geophysics, Geosystems, 2016, 17, 501-520.	2.5	4
60	Hybrid ray tracer and amplitude calculation with finite difference, graph theory and ray bending. , 2006, , .		2
61	The Sabine block, Gulf of Mexico: Promontory on the North American margin?: COMMENT. Geology, 2018, 46, e440-e440.	4.4	1