Mathias Brust

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/622941/publications.pdf Version: 2024-02-01

		31976	27406
113	17,472	53	106
papers	citations	h-index	g-index
123	123	123	19562
all docs	docs citations	times ranked	citing authors
an docs	does citations	times ranked	citing autions

#	Article	IF	CITATIONS
1	Ion shuttling between emulsion droplets by crown ether modified gold nanoparticles. Nanoscale Advances, 2021, 3, 3136-3144.	4.6	2
2	lmaging of Nanoscale Gold in "Intact―Biological Cells by Environmental Electron Microscopy. Journal of Physical Chemistry C, 2021, 125, 27865-27875.	3.1	0
3	Site‣pecific Modification of Gold Nanoparticles by Underpotential Deposition of Cadmium Atoms. ChemElectroChem, 2018, 5, 1586-1590.	3.4	2
4	Entropyâ€Ðriven Reversible Agglomeration of Crown Ether Capped Gold Nanoparticles. Chemistry - A European Journal, 2018, 24, 3151-3155.	3.3	5
5	Multimodal cell tracking from systemic administration to tumour growth by combining gold nanorods and reporter genes. ELife, 2018, 7, .	6.0	33
6	Electrodeposition of Gold Nanostructures at the Interface of a Pickering Emulsion. ChemElectroChem, 2018, 5, 2055-2058.	3.4	6
7	Biocompatible, Multiresponsive Nanogel Composites for Codelivery of Antiangiogenic and Chemotherapeutic Agents. Chemistry of Materials, 2017, 29, 2303-2313.	6.7	29
8	Conserved effects and altered trafficking of Cetuximab antibodies conjugated to gold nanoparticles with precise control of their number and orientation. Nanoscale, 2017, 9, 6111-6121.	5.6	33
9	Sensitive Analysis of Protein Adsorption to Colloidal Gold by Differential Centrifugal Sedimentation. Analytical Chemistry, 2017, 89, 6807-6814.	6.5	48
10	Spatial Analysis of Metal–PLGA Hybrid Microstructures Using 3D SERS Imaging. Advanced Functional Materials, 2017, 27, 1701626.	14.9	37
11	lon Transport across Biological Membranes by Carborane-Capped Gold Nanoparticles. ACS Nano, 2017, 11, 12492-12499.	14.6	43
12	Humidity-Dependent Reversible Transitions in Gold Nanoparticle Superlattices. Chemistry of Materials, 2016, 28, 2970-2980.	6.7	22
13	Design of artificial membrane transporters from gold nanoparticles with controllable hydrophobicity. Faraday Discussions, 2016, 191, 495-510.	3.2	10
14	Singlet Oxygen Generation by Laser Irradiation of Gold Nanoparticles. Journal of Physical Chemistry C, 2016, 120, 10647-10657.	3.1	101
15	Anisotropic nanoparticles: general discussion. Faraday Discussions, 2016, 191, 229-254.	3.2	8
16	Applications: general discussion. Faraday Discussions, 2016, 191, 565-595.	3.2	0
17	Janus and patchy nanoparticles: general discussion. Faraday Discussions, 2016, 191, 117-139.	3.2	3
18	Particles at interfaces: general discussion. Faraday Discussions, 2016, 191, 407-434.	3.2	1

#	Article	IF	CITATIONS
19	Preventing Plasmon Coupling between Gold Nanorods Improves the Sensitivity of Photoacoustic Detection of Labeled Stem Cells <i>in Vivo</i> . ACS Nano, 2016, 10, 7106-7116.	14.6	78
20	Monitoring pattern formation in drying and wetting dispersions of gold nanoparticles by ESEM. Faraday Discussions, 2015, 181, 281-298.	3.2	8
21	Preparation and characterization of Au nanoparticles capped with mercaptocarboranyl clusters. Dalton Transactions, 2014, 43, 5054-5061.	3.3	26
22	Interactions of Gold Nanoparticles with a Phospholipid Monolayer Membrane on Mercury. ACS Nano, 2014, 8, 6074-6080.	14.6	17
23	The plasma protein fibrinogen stabilizes clusters of red blood cells in microcapillary flows. Scientific Reports, 2014, 4, 4348.	3.3	107
24	High-Resolution Sizing of Monolayer-Protected Gold Clusters by Differential Centrifugal Sedimentation. ACS Nano, 2013, 7, 8881-8890.	14.6	71
25	Conjugation of PEG and gold nanoparticles to increase the accessibility and valency of tethered RNA splicing enhancers. Chemical Science, 2013, 4, 257-265.	7.4	7
26	Rheology of Human Blood Plasma: Viscoelastic Versus Newtonian Behavior. Physical Review Letters, 2013, 110, 078305.	7.8	221
27	Mercaptocarborane-Capped Gold Nanoparticles: Electron Pools and Ion Traps with Switchable Hydrophilicity. Journal of the American Chemical Society, 2012, 134, 212-221.	13.7	135
28	Electrocatalytic Hydrogen Redox Chemistry on Gold Nanoparticles. Journal of the American Chemical Society, 2012, 134, 3318-3321.	13.7	49
29	Editorial. Advanced Drug Delivery Reviews, 2012, 64, 127-128.	13.7	0
30	Intracellular mapping with SERS-encoded gold nanostars. Integrative Biology (United Kingdom), 2011, 3, 922.	1.3	127
31	Negotiation of Intracellular Membrane Barriers by TAT-Modified Gold Nanoparticles. ACS Nano, 2011, 5, 5195-5201.	14.6	139
32	Acrylateâ€Facilitated Cellular Uptake of Gold Nanoparticles. Small, 2011, 7, 1982-1986.	10.0	17
33	Electrochemical fabrication of self assembled monolayer using ferrocene-functionalized gold nanoparticles on glassy carbon electrode. Electrochimica Acta, 2011, 56, 7092-7096.	5.2	5
34	Emulsions-directed assembly of gold nanoparticles to molecularly-linked and size-controlled spherical aggregates. Journal of Colloid and Interface Science, 2010, 350, 368-372.	9.4	19
35	Intracellular Delivery and Fate of Peptide-Capped Gold Nanoparticles. Biophysical Journal, 2010, 98, 203a.	0.5	1
36	Enzymatic Activity of Lipaseâ~'Nanoparticle Conjugates and the Digestion of Lipid Liquid Crystalline Assemblies. Langmuir, 2010, 26, 13590-13599.	3.5	25

#	Article	IF	CITATIONS
37	Inflicting Controlled Nonthermal Damage to Subcellular Structures by Laser-Activated Gold Nanoparticles. Nano Letters, 2010, 10, 4549-4554.	9.1	98
38	In situ growth of gold nanoparticles on latent fingerprints—from forensic applications to inkjet printed nanoparticle patterns. Nanoscale, 2010, 2, 2575.	5.6	33
39	Electron microscopy studies of the thermal stability of gold nanoparticle arrays. Gold Bulletin, 2009, 42, 133-143.	2.7	34
40	A Way To Control the Gold Nanocrystals Size: Using Seeds with Different Sizes and Subjecting Them to Mild Annealing. ACS Nano, 2009, 3, 3622-3628.	14.6	37
41	Cathepsin L Digestion of Nanobioconjugates upon Endocytosis. ACS Nano, 2009, 3, 2461-2468.	14.6	110
42	Controlled Step Growth of Molecularly Linked Gold Nanoparticles: From Metallic Monomers to Dimers to Polymeric Nanoparticle Chains. Langmuir, 2009, 25, 1934-1939.	3.5	60
43	A Multidentate Peptide for Stabilization and Facile Bioconjugation of Gold Nanoparticles. Bioconjugate Chemistry, 2009, 20, 619-624.	3.6	72
44	Recyclable Molecular Trapping and SERS Detection in Silver-Loaded Agarose Gels with Dynamic Hot Spots. Analytical Chemistry, 2009, 81, 9233-9238.	6.5	99
45	In situ preparation of network forming gold nanoparticles in agarose hydrogels. Chemical Communications, 2009, , 6661.	4.1	22
46	Preparation of thin ferrite films on silicon using RF sputtering. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 1783-1786.	1.8	6
47	Shaping Supramolecular Nanofibers with Nanoparticles Forming Complementary Hydrogen Bonds. Angewandte Chemie - International Edition, 2008, 47, 1861-1865.	13.8	82
48	Gold—an introductory perspective. Chemical Society Reviews, 2008, 37, 1759.	38.1	384
49	Uptake and Intracellular Fate of Surface-Modified Gold Nanoparticles. ACS Nano, 2008, 2, 1639-1644.	14.6	615
50	Search for the optimally suited cantilever type for high-frequency MFM. Journal of Physics: Conference Series, 2007, 61, 596-600.	0.4	2
51	Design of Polymeric Stabilizers for Size-Controlled Synthesis of Monodisperse Gold Nanoparticles in Water. Langmuir, 2007, 23, 885-895.	3.5	158
52	Site-Specific Ligation of DNA-Modified Gold Nanoparticles Activated by the Restriction EnzymeStyl. Small, 2007, 3, 67-70.	10.0	43
53	Enzymatic Disassembly of DNA–Gold Nanostructures. Small, 2007, 3, 590-594.	10.0	55
54	Coerced mechanical coarsening of nanoparticle assemblies. Nature Nanotechnology, 2007, 2, 167-170.	31.5	41

#	Article	IF	CITATIONS
55	Fabrication of nanostructure via self-assembly of nanowires within the AAO template. Nanoscale Research Letters, 2007, 2, 34-39.	5.7	33
56	Thiol-Specific and Nonspecific Interactions between DNA and Gold Nanoparticles. Langmuir, 2006, 22, 3294-3299.	3.5	65
57	Kinase-Catalyzed Modification of Gold Nanoparticles:Â A New Approach to Colorimetric Kinase Activity Screening. Journal of the American Chemical Society, 2006, 128, 2214-2215.	13.7	269
58	Bionanoconjugation via Click Chemistry:Â The Creation of Functional Hybrids of Lipases and Gold Nanoparticles. Bioconjugate Chemistry, 2006, 17, 1373-1375.	3.6	239
59	Formation of Spherical Nanostructures by the Controlled Aggregation of Gold Colloids. Langmuir, 2006, 22, 2938-2941.	3.5	108
60	Synthesis of hierarchically porous inorganic–metal site-isolated nanocomposites. Chemical Communications, 2006, , 2539-2541.	4.1	25
61	A Generic Approach to Monofunctionalized Protein-Like Gold Nanoparticles Based on Immobilized Metal Ion Affinity Chromatography. ChemBioChem, 2006, 7, 592-594.	2.6	64
62	Synthesis of Porous Materials via Multiscale Templating Approaches: Emulsions, Nanoparticles, Supercritical Fluids, and Directional Freezing. Materials Research Society Symposia Proceedings, 2006, 988, 1.	0.1	0
63	Structure and conductivity of self-assembled films of gold nanoparticles. Applied Physics Letters, 2006, 89, 063110.	3.3	36
64	What are the Limitations in the Characterization of Self-Assembled Metamaterials using Advanced Microscopy Techniques?. Microscopy and Microanalysis, 2005, 11, .	0.4	0
65	Size-Controlled Synthesis of Near-Monodisperse Gold Nanoparticles in the 1â^4 nm Range Using Polymeric Stabilizers. Journal of the American Chemical Society, 2005, 127, 16398-16399.	13.7	331
66	Nanocrystals come to order. Nature Materials, 2005, 4, 364-365.	27.5	26
67	Aligned two- and three-dimensional structures by directional freezing of polymers and nanoparticles. Nature Materials, 2005, 4, 787-793.	27.5	721
68	Molecular Recognition by Calix[4]arene-Modified Gold Nanoparticles in Aqueous Solution. Angewandte Chemie - International Edition, 2005, 44, 2913-2916.	13.8	76
69	Giant field effect in self-assembled metallo-organic nanoscale networks. Physical Review B, 2005, 72, .	3.2	4
70	Selective enzymatic cleavage of gold nanoparticle-labelled DNA on a microarray. IET Nanobiotechnology, 2005, 152, 85.	2.1	2
71	STUDIES ON THE ATTACHMENT OF DNA TO SILICA-COATED NANOPARTICLES THROUGH A DIELS-ALDER REACTION. Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 1075-1079.	1.1	19
72	Extremely Stable Water-Soluble Ag Nanoparticles. Chemistry of Materials, 2005, 17, 4630-4635.	6.7	245

#	Article	IF	CITATIONS
73	Microarray-Based Detection of Protein Binding and Functionality by Gold Nanoparticle Probes. Analytical Chemistry, 2005, 77, 5770-5774.	6.5	155
74	The Peptide Route to Multifunctional Gold Nanoparticles. Bioconjugate Chemistry, 2005, 16, 497-500.	3.6	102
75	Biocompatible gold nanoparticles. Materials Science and Technology, 2004, 20, 980-984.	1.6	56
76	Emulsion-Templated Gold Beads Using Gold Nanoparticles as Building Blocks. Advanced Materials, 2004, 16, 27-30.	21.0	90
77	Enzymatic DNA processing on gold nanoparticles. Journal of Materials Chemistry, 2004, 14, 578.	6.7	49
78	Adaptive chemistry of bifunctional gold nanoparticles at the air/water interface. A synchrotron X-ray study of giant amphiphiles. Faraday Discussions, 2004, 125, 221-233.	3.2	65
79	Journal developments for 2004. Journal of Materials Chemistry, 2004, 14, E1.	6.7	0
80	Rational and Combinatorial Design of Peptide Capping Ligands for Gold Nanoparticles. Journal of the American Chemical Society, 2004, 126, 10076-10084.	13.7	670
81	Fundamental Sintering Studies of 2-Dimensional Gold Nanoparticle Arrays. Microscopy and Microanalysis, 2004, 10, 384-385.	0.4	49
82	Towards Multistep Nanostructure Synthesis: Programmed Enzymatic Self-Assembly of DNA/Gold Systems. Angewandte Chemie, 2003, 115, 201-204.	2.0	33
83	Towards Multistep Nanostructure Synthesis: Programmed Enzymatic Self-Assembly of DNA/Gold Systems. Angewandte Chemie - International Edition, 2003, 42, 191-194.	13.8	157
84	Preparation of Acrylate-Stabilized Gold and Silver Hydrosols and Goldâ^Polymer Composite Films. Langmuir, 2003, 19, 4831-4835.	3.5	229
85	Superlattices start taking shape. Physics World, 2003, 16, 21-21.	0.0	0
86	Nanostructured Cellular Networks. Physical Review Letters, 2002, 89, 248303.	7.8	90
87	Colloidal particle foams: Templates for Au nanowire networks?. Applied Physics Letters, 2002, 81, 5039-5041.	3.3	19
88	Adoption of near-coincident-site lattice orientations by contacting monolayer rafts of metallic nanoparticles with different superlattice periodicities. Philosophical Magazine Letters, 2002, 82, 21-26.	1.2	3
89	Nanometer Scale Patterning of Langmuirâ^'Blodgett Films of Gold Nanoparticles by Electron Beam Lithography. Nano Letters, 2002, 2, 43-47.	9.1	104
90	Atomic Force Microscope Tip Nanoprinting of Gold Nanoclusters. Langmuir, 2002, 18, 872-876.	3.5	67

#	Article	IF	CITATIONS
91	Thioalkylated tetraethylene glycol: a new ligand for water soluble monolayer protected gold clusters. Chemical Communications, 2002, , 2294-2295.	4.1	225
92	The Fate of Sulfur-Bound Hydrogen on Formation of Self-Assembled Thiol Monolayers on Gold:Â1H NMR Spectroscopic Evidence from Solutions of Gold Clusters. Journal of the American Chemical Society, 2002, 124, 1132-1133.	13.7	190
93	Fabrication of 2D Gold Nanowires by Self-Assembly of Gold Nanoparticles on Water Surfaces in the Presence of Surfactants. Advanced Materials, 2002, 14, 1126.	21.0	105
94	Some recent advances in nanostructure preparation from gold and silver particles: a short topical review. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 202, 175-186.	4.7	570
95	Templates for Metal Nanowire Self-Assembly. , 2002, , 139-146.		0
96	Langmuirâ^'Blodgett Films of Alkane Chalcogenide (S,Se,Te) Stabilized Gold Nanoparticles. Nano Letters, 2001, 1, 189-191.	9.1	76
97	Characterisation of thin films containing Au and Pd nanoparticles by grazing-incidence X-ray diffraction and related methods. Journal of Alloys and Compounds, 2001, 328, 248-252.	5.5	8
98	Templated Gold Nanowire Self-Assembly on Carbon Substrates. Advanced Materials, 2001, 13, 1800-1803.	21.0	78
99	Polydisperse Au nanoclusters on silicon: fractal aggregates via spinodal decomposition?. Chemical Physics Letters, 2001, 348, 27-33.	2.6	5
100	Interaction of passivated clusters in solution with micro-patterned surfaces: guided flow versus defect pinning. Nanotechnology, 2001, 12, 6-10.	2.6	11
101	Deposition of passivated gold nanoclusters onto prepatterned substrates. Applied Physics Letters, 1999, 74, 2833-2835.	3.3	30
102	Detection of near-wall hydrodynamic effects by electrochemiluminescence. Journal of Electroanalytical Chemistry, 1999, 470, 89-94.	3.8	10
103	Electrochemical Charge Injection into Immobilized Nanosized Gold Particle Ensembles:Â Potential Modulated Transmission and Reflectance Spectroscopy. Langmuir, 1999, 15, 866-871.	3.5	114
104	Self-Assembly of Nanostructured Materials. , 1999, , .		1
105	Self-Assembled Gold Nanoparticle Thin Films with Nonmetallic Optical and Electronic Properties. Langmuir, 1998, 14, 5425-5429.	3.5	587
106	Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters. Nature, 1998, 396, 444-446.	27.8	719
107	C60 Mediated Aggregation of Gold Nanoparticles. Journal of the American Chemical Society, 1998, 120, 12367-12368.	13.7	102
108	Characterization and Surface Charge Measurement of Self-Assembled CdS Nanoparticle Films. Chemistry of Materials, 1998, 10, 1160-1165.	6.7	114

#	Article	IF	CITATIONS
109	Self-Assembly of Photoluminescent Copper(I)â^'Dithiol Multilayer Thin Films and Bulk Materials. Langmuir, 1997, 13, 5602-5607.	3.5	132
110	Fabrication and Characterization of Self-Assembled Spherical Gold Ultramicroelectrodes. Analytical Chemistry, 1997, 69, 2323-2328.	6.5	125
111	Novel gold-dithiol nano-networks with non-metallic electronic properties. Advanced Materials, 1995, 7, 795-797.	21.0	718
112	Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid–Liquid system. Journal of the Chemical Society Chemical Communications, 1994, .	2.0	5,935
113	Monolayer Protected Clusters of Gold and Silver. , 0, , 96-119.		2