Mathias Brust

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/622941/publications.pdf

Version: 2024-02-01

113 papers 17,472 citations

53 h-index 106 g-index

123 all docs

 $\begin{array}{c} 123 \\ \text{docs citations} \end{array}$

123 times ranked

19562 citing authors

#	Article	IF	CITATIONS
1	Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid–Liquid system. Journal of the Chemical Society Chemical Communications, 1994, .	2.0	5,935
2	Aligned two- and three-dimensional structures by directional freezing of polymers and nanoparticles. Nature Materials, 2005, 4, 787-793.	27.5	721
3	Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters. Nature, 1998, 396, 444-446.	27.8	719
4	Novel gold-dithiol nano-networks with non-metallic electronic properties. Advanced Materials, 1995, 7, 795-797.	21.0	718
5	Rational and Combinatorial Design of Peptide Capping Ligands for Gold Nanoparticles. Journal of the American Chemical Society, 2004, 126, 10076-10084.	13.7	670
6	Uptake and Intracellular Fate of Surface-Modified Gold Nanoparticles. ACS Nano, 2008, 2, 1639-1644.	14.6	615
7	Self-Assembled Gold Nanoparticle Thin Films with Nonmetallic Optical and Electronic Properties. Langmuir, 1998, 14, 5425-5429.	3 . 5	587
8	Some recent advances in nanostructure preparation from gold and silver particles: a short topical review. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 202, 175-186.	4.7	570
9	Gold—an introductory perspective. Chemical Society Reviews, 2008, 37, 1759.	38.1	384
10	Size-Controlled Synthesis of Near-Monodisperse Gold Nanoparticles in the 1â ² 4 nm Range Using Polymeric Stabilizers. Journal of the American Chemical Society, 2005, 127, 16398-16399.	13.7	331
11	Kinase-Catalyzed Modification of Gold Nanoparticles:Â A New Approach to Colorimetric Kinase Activity Screening. Journal of the American Chemical Society, 2006, 128, 2214-2215.	13.7	269
12	Extremely Stable Water-Soluble Ag Nanoparticles. Chemistry of Materials, 2005, 17, 4630-4635.	6.7	245
13	Bionanoconjugation via Click Chemistry:Â The Creation of Functional Hybrids of Lipases and Gold Nanoparticles. Bioconjugate Chemistry, 2006, 17, 1373-1375.	3.6	239
14	Preparation of Acrylate-Stabilized Gold and Silver Hydrosols and Goldâ^'Polymer Composite Films. Langmuir, 2003, 19, 4831-4835.	3.5	229
15	Thioalkylated tetraethylene glycol: a new ligand for water soluble monolayer protected gold clusters. Chemical Communications, 2002, , 2294-2295.	4.1	225
16	Rheology of Human Blood Plasma: Viscoelastic Versus Newtonian Behavior. Physical Review Letters, 2013, 110, 078305.	7.8	221
17	The Fate of Sulfur-Bound Hydrogen on Formation of Self-Assembled Thiol Monolayers on Gold:Â1H NMR Spectroscopic Evidence from Solutions of Gold Clusters. Journal of the American Chemical Society, 2002, 124, 1132-1133.	13.7	190
18	Design of Polymeric Stabilizers for Size-Controlled Synthesis of Monodisperse Gold Nanoparticles in Water. Langmuir, 2007, 23, 885-895.	3.5	158

#	Article	IF	CITATIONS
19	Towards Multistep Nanostructure Synthesis: Programmed Enzymatic Self-Assembly of DNA/Gold Systems. Angewandte Chemie - International Edition, 2003, 42, 191-194.	13.8	157
20	Microarray-Based Detection of Protein Binding and Functionality by Gold Nanoparticle Probes. Analytical Chemistry, 2005, 77, 5770-5774.	6.5	155
21	Negotiation of Intracellular Membrane Barriers by TAT-Modified Gold Nanoparticles. ACS Nano, 2011, 5, 5195-5201.	14.6	139
22	Mercaptocarborane-Capped Gold Nanoparticles: Electron Pools and Ion Traps with Switchable Hydrophilicity. Journal of the American Chemical Society, 2012, 134, 212-221.	13.7	135
23	Self-Assembly of Photoluminescent Copper(I)â^'Dithiol Multilayer Thin Films and Bulk Materials. Langmuir, 1997, 13, 5602-5607.	3 . 5	132
24	Intracellular mapping with SERS-encoded gold nanostars. Integrative Biology (United Kingdom), 2011, 3, 922.	1.3	127
25	Fabrication and Characterization of Self-Assembled Spherical Gold Ultramicroelectrodes. Analytical Chemistry, 1997, 69, 2323-2328.	6.5	125
26	Characterization and Surface Charge Measurement of Self-Assembled CdS Nanoparticle Films. Chemistry of Materials, 1998, 10, 1160-1165.	6.7	114
27	Electrochemical Charge Injection into Immobilized Nanosized Gold Particle Ensembles:Â Potential Modulated Transmission and Reflectance Spectroscopy. Langmuir, 1999, 15, 866-871.	3 . 5	114
28	Cathepsin L Digestion of Nanobioconjugates upon Endocytosis. ACS Nano, 2009, 3, 2461-2468.	14.6	110
29	Formation of Spherical Nanostructures by the Controlled Aggregation of Gold Colloids. Langmuir, 2006, 22, 2938-2941.	3.5	108
30	The plasma protein fibrinogen stabilizes clusters of red blood cells in microcapillary flows. Scientific Reports, 2014, 4, 4348.	3.3	107
31	Fabrication of 2D Gold Nanowires by Self-Assembly of Gold Nanoparticles on Water Surfaces in the Presence of Surfactants. Advanced Materials, 2002, 14, 1126.	21.0	105
32	Nanometer Scale Patterning of Langmuirâ [*] Blodgett Films of Gold Nanoparticles by Electron Beam Lithography. Nano Letters, 2002, 2, 43-47.	9.1	104
33	C60 Mediated Aggregation of Gold Nanoparticles. Journal of the American Chemical Society, 1998, 120, 12367-12368.	13.7	102
34	The Peptide Route to Multifunctional Gold Nanoparticles. Bioconjugate Chemistry, 2005, 16, 497-500.	3.6	102
35	Singlet Oxygen Generation by Laser Irradiation of Gold Nanoparticles. Journal of Physical Chemistry C, 2016, 120, 10647-10657.	3.1	101
36	Recyclable Molecular Trapping and SERS Detection in Silver-Loaded Agarose Gels with Dynamic Hot Spots. Analytical Chemistry, 2009, 81, 9233-9238.	6.5	99

#	Article	IF	CITATIONS
37	Inflicting Controlled Nonthermal Damage to Subcellular Structures by Laser-Activated Gold Nanoparticles. Nano Letters, 2010, 10, 4549-4554.	9.1	98
38	Nanostructured Cellular Networks. Physical Review Letters, 2002, 89, 248303.	7.8	90
39	Emulsion-Templated Gold Beads Using Gold Nanoparticles as Building Blocks. Advanced Materials, 2004, 16, 27-30.	21.0	90
40	Shaping Supramolecular Nanofibers with Nanoparticles Forming Complementary Hydrogen Bonds. Angewandte Chemie - International Edition, 2008, 47, 1861-1865.	13.8	82
41	Templated Gold Nanowire Self-Assembly on Carbon Substrates. Advanced Materials, 2001, 13, 1800-1803.	21.0	78
42	Preventing Plasmon Coupling between Gold Nanorods Improves the Sensitivity of Photoacoustic Detection of Labeled Stem Cells <i>i>in Vivo</i> . ACS Nano, 2016, 10, 7106-7116.	14.6	78
43	Langmuirâ^'Blodgett Films of Alkane Chalcogenide (S,Se,Te) Stabilized Gold Nanoparticles. Nano Letters, 2001, 1, 189-191.	9.1	76
44	Molecular Recognition by Calix[4]arene-Modified Gold Nanoparticles in Aqueous Solution. Angewandte Chemie - International Edition, 2005, 44, 2913-2916.	13.8	76
45	A Multidentate Peptide for Stabilization and Facile Bioconjugation of Gold Nanoparticles. Bioconjugate Chemistry, 2009, 20, 619-624.	3.6	72
46	High-Resolution Sizing of Monolayer-Protected Gold Clusters by Differential Centrifugal Sedimentation. ACS Nano, 2013, 7, 8881-8890.	14.6	71
47	Atomic Force Microscope Tip Nanoprinting of Gold Nanoclusters. Langmuir, 2002, 18, 872-876.	3.5	67
48	Adaptive chemistry of bifunctional gold nanoparticles at the air/water interface. A synchrotron X-ray study of giant amphiphiles. Faraday Discussions, 2004, 125, 221-233.	3. 2	65
49	Thiol-Specific and Nonspecific Interactions between DNA and Gold Nanoparticles. Langmuir, 2006, 22, 3294-3299.	3.5	65
50	A Generic Approach to Monofunctionalized Protein-Like Gold Nanoparticles Based on Immobilized Metal Ion Affinity Chromatography. ChemBioChem, 2006, 7, 592-594.	2.6	64
51	Controlled Step Growth of Molecularly Linked Gold Nanoparticles: From Metallic Monomers to Dimers to Polymeric Nanoparticle Chains. Langmuir, 2009, 25, 1934-1939.	3.5	60
52	Biocompatible gold nanoparticles. Materials Science and Technology, 2004, 20, 980-984.	1.6	56
53	Enzymatic Disassembly of DNA–Gold Nanostructures. Small, 2007, 3, 590-594.	10.0	55
54	Enzymatic DNA processing on gold nanoparticles. Journal of Materials Chemistry, 2004, 14, 578.	6.7	49

#	Article	IF	Citations
55	Fundamental Sintering Studies of 2-Dimensional Gold Nanoparticle Arrays. Microscopy and Microanalysis, 2004, 10, 384-385.	0.4	49
56	Electrocatalytic Hydrogen Redox Chemistry on Gold Nanoparticles. Journal of the American Chemical Society, 2012, 134, 3318-3321.	13.7	49
57	Sensitive Analysis of Protein Adsorption to Colloidal Gold by Differential Centrifugal Sedimentation. Analytical Chemistry, 2017, 89, 6807-6814.	6.5	48
58	Site-Specific Ligation of DNA-Modified Gold Nanoparticles Activated by the Restriction EnzymeStyl. Small, 2007, 3, 67-70.	10.0	43
59	Ion Transport across Biological Membranes by Carborane-Capped Gold Nanoparticles. ACS Nano, 2017, 11, 12492-12499.	14.6	43
60	Coerced mechanical coarsening of nanoparticle assemblies. Nature Nanotechnology, 2007, 2, 167-170.	31.5	41
61	A Way To Control the Gold Nanocrystals Size: Using Seeds with Different Sizes and Subjecting Them to Mild Annealing. ACS Nano, 2009, 3, 3622-3628.	14.6	37
62	Spatial Analysis of Metal–PLGA Hybrid Microstructures Using 3D SERS Imaging. Advanced Functional Materials, 2017, 27, 1701626.	14.9	37
63	Structure and conductivity of self-assembled films of gold nanoparticles. Applied Physics Letters, 2006, 89, 063110.	3.3	36
64	Electron microscopy studies of the thermal stability of gold nanoparticle arrays. Gold Bulletin, 2009, 42, 133-143.	2.7	34
65	Towards Multistep Nanostructure Synthesis: Programmed Enzymatic Self-Assembly of DNA/Gold Systems. Angewandte Chemie, 2003, 115, 201-204.	2.0	33
66	Fabrication of nanostructure via self-assembly of nanowires within the AAO template. Nanoscale Research Letters, 2007, 2, 34-39.	5.7	33
67	In situ growth of gold nanoparticles on latent fingerprints—from forensic applications to inkjet printed nanoparticle patterns. Nanoscale, 2010, 2, 2575.	5.6	33
68	Conserved effects and altered trafficking of Cetuximab antibodies conjugated to gold nanoparticles with precise control of their number and orientation. Nanoscale, 2017, 9, 6111-6121.	5.6	33
69	Multimodal cell tracking from systemic administration to tumour growth by combining gold nanorods and reporter genes. ELife, 2018, 7, .	6.0	33
70	Deposition of passivated gold nanoclusters onto prepatterned substrates. Applied Physics Letters, 1999, 74, 2833-2835.	3.3	30
71	Biocompatible, Multiresponsive Nanogel Composites for Codelivery of Antiangiogenic and Chemotherapeutic Agents. Chemistry of Materials, 2017, 29, 2303-2313.	6.7	29
72	Nanocrystals come to order. Nature Materials, 2005, 4, 364-365.	27. 5	26

#	Article	IF	CITATIONS
73	Preparation and characterization of Au nanoparticles capped with mercaptocarboranyl clusters. Dalton Transactions, 2014, 43, 5054-5061.	3.3	26
74	Synthesis of hierarchically porous inorganic–metal site-isolated nanocomposites. Chemical Communications, 2006, , 2539-2541.	4.1	25
75	Enzymatic Activity of Lipaseâ°'Nanoparticle Conjugates and the Digestion of Lipid Liquid Crystalline Assemblies. Langmuir, 2010, 26, 13590-13599.	3.5	25
76	In situ preparation of network forming gold nanoparticles in agarose hydrogels. Chemical Communications, 2009, , 6661.	4.1	22
77	Humidity-Dependent Reversible Transitions in Gold Nanoparticle Superlattices. Chemistry of Materials, 2016, 28, 2970-2980.	6.7	22
78	Colloidal particle foams: Templates for Au nanowire networks?. Applied Physics Letters, 2002, 81, 5039-5041.	3.3	19
79	STUDIES ON THE ATTACHMENT OF DNA TO SILICA-COATED NANOPARTICLES THROUGH A DIELS-ALDER REACTION. Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 1075-1079.	1.1	19
80	Emulsions-directed assembly of gold nanoparticles to molecularly-linked and size-controlled spherical aggregates. Journal of Colloid and Interface Science, 2010, 350, 368-372.	9.4	19
81	Acrylateâ€Facilitated Cellular Uptake of Gold Nanoparticles. Small, 2011, 7, 1982-1986.	10.0	17
82	Interactions of Gold Nanoparticles with a Phospholipid Monolayer Membrane on Mercury. ACS Nano, 2014, 8, 6074-6080.	14.6	17
83	Interaction of passivated clusters in solution with micro-patterned surfaces: guided flow versus defect pinning. Nanotechnology, 2001, 12, 6-10.	2.6	11
84	Detection of near-wall hydrodynamic effects by electrochemiluminescence. Journal of Electroanalytical Chemistry, 1999, 470, 89-94.	3.8	10
85	Design of artificial membrane transporters from gold nanoparticles with controllable hydrophobicity. Faraday Discussions, 2016, 191, 495-510.	3.2	10
86	Characterisation of thin films containing Au and Pd nanoparticles by grazing-incidence X-ray diffraction and related methods. Journal of Alloys and Compounds, 2001, 328, 248-252.	5.5	8
87	Monitoring pattern formation in drying and wetting dispersions of gold nanoparticles by ESEM. Faraday Discussions, 2015, 181, 281-298.	3.2	8
88	Anisotropic nanoparticles: general discussion. Faraday Discussions, 2016, 191, 229-254.	3.2	8
89	Conjugation of PEG and gold nanoparticles to increase the accessibility and valency of tethered RNA splicing enhancers. Chemical Science, 2013, 4, 257-265.	7.4	7
90	Preparation of thin ferrite films on silicon using RF sputtering. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 1783-1786.	1.8	6

#	Article	IF	CITATIONS
91	Electrodeposition of Gold Nanostructures at the Interface of a Pickering Emulsion. ChemElectroChem, 2018, 5, 2055-2058.	3.4	6
92	Polydisperse Au nanoclusters on silicon: fractal aggregates via spinodal decomposition?. Chemical Physics Letters, 2001, 348, 27-33.	2.6	5
93	Electrochemical fabrication of self assembled monolayer using ferrocene-functionalized gold nanoparticles on glassy carbon electrode. Electrochimica Acta, 2011, 56, 7092-7096.	5.2	5
94	Entropyâ€Driven Reversible Agglomeration of Crown Ether Capped Gold Nanoparticles. Chemistry - A European Journal, 2018, 24, 3151-3155.	3.3	5
95	Giant field effect in self-assembled metallo-organic nanoscale networks. Physical Review B, 2005, 72, .	3.2	4
96	Adoption of near-coincident-site lattice orientations by contacting monolayer rafts of metallic nanoparticles with different superlattice periodicities. Philosophical Magazine Letters, 2002, 82, 21-26.	1.2	3
97	Janus and patchy nanoparticles: general discussion. Faraday Discussions, 2016, 191, 117-139.	3.2	3
98	Monolayer Protected Clusters of Gold and Silver. , 0, , 96-119.		2
99	Selective enzymatic cleavage of gold nanoparticle-labelled DNA on a microarray. IET Nanobiotechnology, 2005, 152, 85.	2.1	2
100	Search for the optimally suited cantilever type for high-frequency MFM. Journal of Physics: Conference Series, 2007, 61, 596-600.	0.4	2
101	Siteâ€Specific Modification of Gold Nanoparticles by Underpotential Deposition of Cadmium Atoms. ChemElectroChem, 2018, 5, 1586-1590.	3.4	2
102	Ion shuttling between emulsion droplets by crown ether modified gold nanoparticles. Nanoscale Advances, 2021, 3, 3136-3144.	4.6	2
103	Intracellular Delivery and Fate of Peptide-Capped Gold Nanoparticles. Biophysical Journal, 2010, 98, 203a.	0.5	1
104	Particles at interfaces: general discussion. Faraday Discussions, 2016, 191, 407-434.	3.2	1
105	Self-Assembly of Nanostructured Materials. , 1999, , .		1
106	Superlattices start taking shape. Physics World, 2003, 16, 21-21.	0.0	0
107	Journal developments for 2004. Journal of Materials Chemistry, 2004, 14, E1.	6.7	0
108	What are the Limitations in the Characterization of Self-Assembled Metamaterials using Advanced Microscopy Techniques?. Microscopy and Microanalysis, 2005, 11, .	0.4	0

Mathias Brust

#	Article	IF	CITATIONS
109	Synthesis of Porous Materials via Multiscale Templating Approaches: Emulsions, Nanoparticles, Supercritical Fluids, and Directional Freezing. Materials Research Society Symposia Proceedings, 2006, 988, 1.	0.1	0
110	Editorial. Advanced Drug Delivery Reviews, 2012, 64, 127-128.	13.7	0
111	Applications: general discussion. Faraday Discussions, 2016, 191, 565-595.	3.2	0
112	Templates for Metal Nanowire Self-Assembly. , 2002, , 139-146.		0
113	Imaging of Nanoscale Gold in "Intact―Biological Cells by Environmental Electron Microscopy. Journal of Physical Chemistry C, 2021, 125, 27865-27875.	3.1	0