Gisa Tiegs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6229036/publications.pdf Version: 2024-02-01

CIEN TIECE

#	Article	IF	CITATIONS
1	TNF in the liver: targeting a central player in inflammation. Seminars in Immunopathology, 2022, 44, 445-459.	6.1	47
2	Antigen Cross-Presentation by Murine Proximal Tubular Epithelial Cells Induces Cytotoxic and Inflammatory CD8+ T Cells. Cells, 2022, 11, 1510.	4.1	6
3	Pathogenic T-Cell Responses in Immune-Mediated Glomerulonephritis. Cells, 2022, 11, 1625.	4.1	15
4	Antigen presentation, autoantibody production, and therapeutic targets in autoimmune liver disease. Cellular and Molecular Immunology, 2021, 18, 92-111.	10.5	33
5	Immune regulation in renal inflammation. Cell and Tissue Research, 2021, 385, 305-322.	2.9	7
6	Smad7 Deficiency in Myeloid Cells Does Not Affect Liver Injury, Inflammation or Fibrosis after Chronic CCl4 Exposure in Mice. International Journal of Molecular Sciences, 2021, 22, 11575.	4.1	2
7	Neurogenic tachykinin mechanisms in experimental nephritis of rats. Pflugers Archiv European Journal of Physiology, 2020, 472, 1705-1717.	2.8	7
8	Afferent renal innervation in anti-Thy1.1 nephritis in rats. American Journal of Physiology - Renal Physiology, 2020, 319, F822-F832.	2.7	7
9	Hepatic ILC2 activity is regulated by liver inflammation-induced cytokines and effector CD4+ T cells. Scientific Reports, 2020, 10, 1071.	3.3	24
10	Pioglitazone-Mediated Peroxisome Proliferator-Activated Receptor Î ³ Activation Aggravates Murine Immune-Mediated Hepatitis. International Journal of Molecular Sciences, 2020, 21, 2523.	4.1	3
11	Antimicrobial peptides in patients with anorexia nervosa: comparison with healthy controls and the impact of weight gain. Scientific Reports, 2020, 10, 22223.	3.3	2
12	Acute Liver Injury after CCl4 Administration Is Independent of Smad7 Expression in Myeloid Cells. International Journal of Molecular Sciences, 2019, 20, 5528.	4.1	8
13	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	2.9	766
14	Interferon-Î ³ -dependent immune responses contribute to the pathogenesis of sclerosing cholangitis in mice. Journal of Hepatology, 2019, 71, 773-782.	3.7	30
15	Type 2 Innate Lymphoid Cells in Liver and Gut: From Current Knowledge to Future Perspectives. International Journal of Molecular Sciences, 2019, 20, 1896.	4.1	12
16	Renal proximal tubular epithelial cells exert immunomodulatory function by driving inflammatory CD4 ⁺ T cell responses. American Journal of Physiology - Renal Physiology, 2019, 317, F77-F89.	2.7	22
17	Deletion of tumour necrosis factor \hat{I}_{\pm} receptor 1 elicits an increased TH17 immune response in the chronically inflamed liver. Scientific Reports, 2019, 9, 4232.	3.3	10
18	The co-inhibitory molecule PD-L1 contributes to regulatory T cell-mediated protection in murine crescentic glomerulonephritis. Scientific Reports, 2019, 9, 2038.	3.3	25

#	Article	IF	CITATIONS
19	CCL21â€expression and accumulation of CCR7 ⁺ NK cells in livers of patients with primary sclerosing cholangitis. European Journal of Immunology, 2019, 49, 758-769.	2.9	18
20	THU0229â€AMPHIREGULIN ATTENUATES LUPUS NEPHRITIS VIA SUPPRESSION OF PRO-INFLAMMATORY T-CELL FUNCTIONS IN AN ANIMAL MODEL OF SLE. , 2019, , .		0
21	Contribution of Macrophage Efferocytosis to Liver Homeostasis and Disease. Frontiers in Immunology, 2019, 10, 2670.	4.8	36
22	Carcinoembryonic antigenâ€related cell adhesion molecule 1 controls ILâ€2â€dependent regulatory Tâ€cell induction in immuneâ€mediated hepatitis in mice. Hepatology, 2018, 68, 200-214.	7.3	18
23	Early heme oxygenase 1 induction delays tumour initiation and enhances DNA damage repair in liver macrophages of Mdr2â^'/â^' mice. Scientific Reports, 2018, 8, 16238.	3.3	8
24	CEACAM1 in Liver Injury, Metabolic and Immune Regulation. International Journal of Molecular Sciences, 2018, 19, 3110.	4.1	51
25	NLRP3 Inflammasome and IL-33: Novel Players in Sterile Liver Inflammation. International Journal of Molecular Sciences, 2018, 19, 2732.	4.1	46
26	Haem oxygenaseâ€1 polymorphisms can affect HCV replication and treatment responses with different efficacy in humanized mice. Liver International, 2017, 37, 1128-1137.	3.9	8
27	Paracetamol Medication During Pregnancy: Insights on Intake Frequencies, Dosages and Effects on Hematopoietic Stem Cell Populations in Cord Blood From a Longitudinal Prospective Pregnancy Cohort. EBioMedicine, 2017, 26, 146-151.	6.1	27
28	A Protective Function of IL-22BP in Ischemia Reperfusion and Acetaminophen-Induced Liver Injury. Journal of Immunology, 2017, 199, 4078-4090.	0.8	38
29	A Proinflammatory Role of Type 2 Innate Lymphoid Cells in Murine Immune-Mediated Hepatitis. Journal of Immunology, 2017, 198, 128-137.	0.8	49
30	Modulation of liver tolerance by conventional and nonconventional antigen-presenting cells and regulatory immune cells. Cellular and Molecular Immunology, 2016, 13, 277-292.	10.5	207
31	Immunology of hepatic diseases during pregnancy. Seminars in Immunopathology, 2016, 38, 669-685.	6.1	19
32	Khaya grandifoliola C.DC: a potential source of active ingredients against hepatitis C virus in vitro. Archives of Virology, 2016, 161, 1169-1181.	2.1	14
33	CXCR3+ Regulatory T Cells Control TH1 Responses in Crescentic GN. Journal of the American Society of Nephrology: JASN, 2016, 27, 1933-1942.	6.1	72
34	The Limonoids TS3 and Rubescin E Induce Apoptosis in Human Hepatoma Cell Lines and Interfere with NF-κB Signaling. PLoS ONE, 2016, 11, e0160843.	2.5	10
35	CEACAM1 controls the EMT switch in murine mammary carcinoma <i>in vitro</i> and <i>in vivo</i> . Oncotarget, 2016, 7, 63730-63746.	1.8	22
36	A disintegrin and metalloprotease 10 (ADAM10) is a central regulator of murine liver tissue homeostasis. Oncotarget, 2016, 7, 17431-17441.	1.8	17

#	Article	IF	CITATIONS
37	Chronic liver inflammation modifies DNA methylation at the precancerous stage of murine hepatocarcinogenesis. Oncotarget, 2015, 6, 11047-11060.	1.8	21
38	Authors' reply to letter by C. Steffen. European Journal of Pain, 2015, 19, 1051-1053.	2.8	0
39	Prenatal acetaminophen induces liver toxicity in dams, reduces fetal liver stem cells, and increases airway inflammation in adult offspring. Journal of Hepatology, 2015, 62, 1085-1091.	3.7	27
40	Testosterone Suppresses Hepatic Inflammation by the Downregulation of IL-17, CXCL-9, and CXCL-10 in a Mouse Model of Experimental Acute Cholangitis. Journal of Immunology, 2015, 194, 2522-2530.	0.8	50
41	Prenatal Acetaminophen Affects Maternal Immune and Endocrine Adaptation to Pregnancy, Induces Placental Damage, and Impairs Fetal Development in Mice. American Journal of Pathology, 2015, 185, 2805-2818.	3.8	43
42	Matrix Conditions and KLF2-Dependent Induction of Heme Oxygenase-1 Modulate Inhibition of HCV Replication by Fluvastatin. PLoS ONE, 2014, 9, e96533.	2.5	17
43	CEACAM1 Confers Resistance Toward Oxygen-Induced Vessel Damage in a Mouse Model of Retinopathy of Prematurity. Investigative Ophthalmology and Visual Science, 2014, 55, 7950-7960.	3.3	7
44	Hepatocytes induce Foxp3+ regulatory T cells by Notch signaling. Journal of Leukocyte Biology, 2014, 96, 571-577.	3.3	40
45	New problems arising from old drugs: second-generation effects of acetaminophen. Expert Review of Clinical Pharmacology, 2014, 7, 655-662.	3.1	20
46	Hepatic CD141+IFNλ+ DC subset: One against all?. Journal of Hepatology, 2014, 60, 9-11.	3.7	2
47	Acetaminophen and pregnancy: short- and long-term consequences for mother and child. Journal of Reproductive Immunology, 2013, 97, 128-139.	1.9	87
48	Hepatocytes Contribute to Immune Regulation in the Liver by Activation of the Notch Signaling Pathway in T Cells. Journal of Immunology, 2013, 191, 5574-5582.	0.8	48
49	Inhibition of inflammatory CD4 T cell activity by murine liver sinusoidal endothelial cells. Journal of Hepatology, 2013, 58, 112-118.	3.7	91
50	Regulatory T Cell–Derived IL-10 Ameliorates Crescentic GN. Journal of the American Society of Nephrology: JASN, 2013, 24, 930-942.	6.1	47
51	Interstrain differences in chronic hepatitis and tumor development in a murine model of inflammation-mediated hepatocarcinogenesis. Hepatology, 2013, 58, 192-204.	7.3	40
52	Immature Renal Dendritic Cells Recruit Regulatory CXCR6+ Invariant Natural Killer T Cells to Attenuate Crescentic GN. Journal of the American Society of Nephrology: JASN, 2012, 23, 1987-2000.	6.1	50
53	Sharpin Contributes to TNFα Dependent NFκB Activation and Anti-Apoptotic Signalling in Hepatocytes. PLoS ONE, 2012, 7, e29993.	2.5	26
54	Induction of heme oxygenase 1 prevents progression of liver fibrosis in Mdr2 knockout mice. Hepatology, 2012, 55, 553-562.	7.3	52

#	Article	IF	CITATIONS
55	CXCR3 Deficiency Exacerbates Liver Disease and Abrogates Tolerance in a Mouse Model of Immune-Mediated Hepatitis. Journal of Immunology, 2011, 186, 5284-5293.	0.8	75
56	Regulatory T cells control the Th1 immune response in murine crescentic glomerulonephritis. Kidney International, 2011, 80, 154-164.	5.2	82
57	The heme oxygenase 1 product biliverdin interferes with hepatitis C virus replication by increasing antiviral interferon response. Hepatology, 2010, 51, 398-404.	7.3	113
58	CCR6 Recruits Regulatory T Cells and Th17 Cells to the Kidney in Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2010, 21, 974-985.	6.1	159
59	Tolerance Induction in Response to Liver Inflammation. Digestive Diseases, 2010, 28, 86-92.	1.9	24
60	Immune tolerance: What is unique about the liver. Journal of Autoimmunity, 2010, 34, 1-6.	6.5	326
61	Down-regulation of the De-ubiquitinating Enzyme Ubiquitin-specific Protease 2 Contributes to Tumor Necrosis Factor-α-induced Hepatocyte Survival. Journal of Biological Chemistry, 2009, 284, 495-504.	3.4	58
62	Pivotal Advance: Heme oxygenase 1 expression by human CD4+ T cells is not sufficient for their development of immunoregulatory capacity. Journal of Leukocyte Biology, 2009, 87, 193-202.	3.3	23
63	Inhibition of heme oxygenase 1 expression by small interfering RNA decreases orthotopic tumor growth in livers of mice. International Journal of Cancer, 2008, 123, 1269-1277.	5.1	87
64	Activation-induced NKT cell hyporesponsiveness protects from α-galactosylceramide hepatitis and is independent of active transregulatory factors. Journal of Leukocyte Biology, 2008, 84, 264-279.	3.3	20
65	TNF Pretreatment Interferes with Mitochondrial Apoptosis in the Mouse Liver by A20-Mediated Down-Regulation of Bax. Journal of Immunology, 2007, 179, 7042-7049.	0.8	33
66	IL-10, regulatory T cells, and Kupffer cells mediate tolerance in concanavalin A-induced liver injury in mice. Hepatology, 2007, 45, 475-485.	7.3	234
67	Lack of chemokine receptor CCR5 promotes murine fulminant liver failure. Hepatology, 2006, 44, 275-277.	7.3	0
68	Tumour necrosis factor α (TNF)–TNF receptor 1-inducible cytoprotective proteins in the mouse liver: relevance of suppressors of cytokine signalling. Biochemical Journal, 2005, 385, 537-544.	3.7	33
69	α-Galactosylceramide-Induced Liver Injury in Mice Is Mediated by TNF-α but Independent of Kupffer Cells. Journal of Immunology, 2005, 175, 1540-1550.	0.8	153
70	Immune-mediated liver injury. Journal of Hepatology, 2005, 42, 920-923.	3.7	30
71	Cooperative effect of biliverdin and carbon monoxide on survival of mice in immune-mediated liver injury. Hepatology, 2004, 40, 1128-1135.	7.3	69
72	Heme oxygenase-1 and its reaction product, carbon monoxide, prevent inflammation-related apoptotic liver damage in mice. Hepatology, 2003, 38, 909-918.	7.3	158

#	Article	IF	CITATIONS
73	Parenchymal, But Not Leukocyte, TNF Receptor 2 Mediates T Cell-Dependent Hepatitis in Mice. Journal of Immunology, 2003, 170, 2129-2137.	0.8	17
74	Heme oxygenase-1 and its reaction product, carbon monoxide, prevent inflammation-related apoptotic liver damage in mice. Hepatology, 2003, 38, 909-918.	7.3	86
75	In vivoregulation of inducible NO synthase in immune-mediated liver injury in mice. Hepatology, 2002, 36, 1061-1069.	7.3	32
76	Low–molecular-weight hyaluronic acid induces nuclear factor-κB–dependent resistance against tumor necrosis factor l±â€"mediated liver injury in mice. Hepatology, 2001, 34, 535-547.	7.3	49
77	Dissection of the Intracellular Pathways in Hepatocytes Suggests a Role for Jun Kinase and IFN Regulatory Factor-1 in Con A-Induced Liver Failure. Journal of Immunology, 2001, 167, 514-523.	0.8	57
78	Importance of Kupffer Cells for T-Cell-Dependent Liver Injury in Mice. American Journal of Pathology, 2000, 157, 1671-1683.	3.8	270
79	Pathophysiological mechanisms of TNF during intoxication with natural or man-made toxins. Toxicology, 1999, 138, 103-126.	4.2	72
80	Concanavalin A hepatotoxicity in mice: Tumor necrosis factor-mediated organ failure independent of caspase-3-like protease activation. Hepatology, 1999, 30, 1241-1251.	7.3	98
81	Quantification of apoptotic and lytic cell death by video microscopy in combination with artificial neural networks. , 1998, 31, 20-28.		6
82	In vivo evidence for a functional role of both tumor necrosis factor (TNF) receptors and transmembrane TNF in experimental hepatitis. European Journal of Immunology, 1997, 27, 2870-2875.	2.9	177
83	The 55-kD Tumor Necrosis Factor Receptor and CD95 Independently Signal Murine Hepatocyte Apoptosis and Subsequent Liver Failure. Molecular Medicine, 1996, 2, 109-124.	4.4	122
84	Lipopolysaccharide-induced interleukin-10 in mice: role of endogenous tumor necrosis factor-α. European Journal of Immunology, 1995, 25, 2888-2893.	2.9	123
85	Concanavalin A—induced T-cell—mediated hepatic injury in mice: The role of tumor necrosis factor. Hepatology, 1995, 21, 190-198.	7.3	377
86	Interleukin-1 and nitric oxide protect against tumor necrosis factor α-induced liver injury through distinct pathways. Hepatology, 1995, 22, 1829-1837.	7.3	84
87	Tumor necrosis factor-induced hepatic DNA fragmentation as an early marker of T cell-dependent liver injury in mice. Gastroenterology, 1995, 109, 166-176.	1.3	97