## Jiaxin Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6228866/publications.pdf Version: 2024-02-01



ΙΙΛΥΙΝ ΗΛΝ

| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | EVOLUTION OF THE GALAXY–DARK MATTER CONNECTION AND THE ASSEMBLY OF GALAXIES IN DARK MATTER HALOS. Astrophysical Journal, 2012, 752, 41.                                                                | 4.5 | 257       |
| 2  | Structure finding in cosmological simulations: the state of affairs. Monthly Notices of the Royal Astronomical Society, 2013, 435, 1618-1658.                                                          | 4.4 | 138       |
| 3  | Subhaloes going Notts: the subhalo-finder comparison project. Monthly Notices of the Royal<br>Astronomical Society, 2012, 423, 1200-1214.                                                              | 4.4 | 132       |
| 4  | Estimating the dark matter halo mass of our Milky Way using dynamical tracers. Monthly Notices of the Royal Astronomical Society, 2015, 453, 377-400.                                                  | 4.4 | 99        |
| 5  | A unified model for the spatial and mass distribution of subhaloes. Monthly Notices of the Royal<br>Astronomical Society, 2016, 457, 1208-1223.                                                        | 4.4 | 96        |
| 6  | Sussing Merger Trees: The Merger Trees Comparison Project. Monthly Notices of the Royal Astronomical Society, 2013, 436, 150-162.                                                                      | 4.4 | 80        |
| 7  | Planes of satellite galaxies: when exceptions are the rule. Monthly Notices of the Royal Astronomical Society, 2015, 452, 3838-3852.                                                                   | 4.4 | 79        |
| 8  | Galaxy And Mass Assembly (GAMA): the halo mass of galaxy groups from maximum-likelihood weak<br>lensing. Monthly Notices of the Royal Astronomical Society, 2015, 446, 1356-1379.                      | 4.4 | 72        |
| 9  | The mass of our Milky Way. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1.                                                                                                               | 5.1 | 69        |
| 10 | Resolving subhaloes' lives with the Hierarchical Bound-Tracing algorithm. Monthly Notices of the Royal Astronomical Society, 2012, 427, 2437-2449.                                                     | 4.4 | 68        |
| 11 | Constraining extended gamma-ray emission from galaxy clusters. Monthly Notices of the Royal<br>Astronomical Society, 2012, 427, 1651-1665.                                                             | 4.4 | 58        |
| 12 | hbt+: an improved code for finding subhaloes and building merger trees in cosmological simulations.<br>Monthly Notices of the Royal Astronomical Society, 2018, 474, 604-617.                          | 4.4 | 58        |
| 13 | Major mergers going Notts: challenges for modern halo finders. Monthly Notices of the Royal<br>Astronomical Society, 2015, 454, 3020-3029.                                                             | 4.4 | 52        |
| 14 | The multidimensional dependence of halo bias in the eye of a machine: a tale of halo structure,<br>assembly, and environment. Monthly Notices of the Royal Astronomical Society, 2019, 482, 1900-1919. | 4.4 | 42        |
| 15 | Exploring the liminality: properties of haloes and subhaloes in borderline <i>f</i> ( <i>R</i> ) gravity.<br>Monthly Notices of the Royal Astronomical Society, 2015, 452, 3179-3191.                  | 4.4 | 39        |
| 16 | Constraining the Milky Way Mass Profile with Phase-space Distribution of Satellite Galaxies.<br>Astrophysical Journal, 2020, 894, 10.                                                                  | 4.5 | 38        |
| 17 | SUSSING MERGER TREES: the influence of the halo finder. Monthly Notices of the Royal Astronomical Society, 2014, 441, 3488-3501.                                                                       | 4.4 | 36        |
| 18 | StarGO: A New Method to Identify the Galactic Origins of Halo Stars. Astrophysical Journal, 2018, 863, 26.                                                                                             | 4.5 | 36        |

Jiaxin Han

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A weak gravitational lensing recalibration of the scaling relations linking the gas properties of dark<br>haloes to their mass. Monthly Notices of the Royal Astronomical Society, 2016, 456, 2301-2320.                  | 4.4 | 33        |
| 20 | Streams going Notts: the tidal debris finder comparison project. Monthly Notices of the Royal Astronomical Society, 2013, 433, 1537-1555.                                                                                 | 4.4 | 32        |
| 21 | Subhaloes gone Notts: spin across subhaloes and finders. Monthly Notices of the Royal Astronomical Society, 2013, 429, 2739-2747.                                                                                         | 4.4 | 31        |
| 22 | INTERNAL KINEMATICS OF GROUPS OF GALAXIES IN THE SLOAN DIGITAL SKY SURVEY DATA RELEASE 7.<br>Astrophysical Journal, 2012, 758, 50.                                                                                        | 4.5 | 28        |
| 23 | The Revised IRAS-FSC Redshift Catalogue (RIFSCz). Monthly Notices of the Royal Astronomical Society, 2014, 442, 2739-2750.                                                                                                | 4.4 | 27        |
| 24 | A SCALING RELATION BETWEEN MERGER RATE OF GALAXIES AND THEIR CLOSE PAIR COUNT. Astrophysical<br>Journal, 2014, 790, 7.                                                                                                    | 4.5 | 26        |
| 25 | GALAXY CLUSTERING AND PROJECTED DENSITY PROFILES AS TRACED BY SATELLITES IN PHOTOMETRIC SURVEYS: METHODOLOGY AND LUMINOSITY DEPENDENCE. Astrophysical Journal, 2011, 734, 88.                                             | 4.5 | 25        |
| 26 | Sussing merger trees: the impact of halo merger trees on galaxy properties in a semi-analytic model.<br>Monthly Notices of the Royal Astronomical Society, 2014, 445, 4197-4210.                                          | 4.4 | 23        |
| 27 | The stellar halo of isolated central galaxies in the Hyper Suprime-Cam imaging survey. Monthly<br>Notices of the Royal Astronomical Society, 2019, 487, 1580-1606.                                                        | 4.4 | 23        |
| 28 | What to expect from dynamical modelling of galactic haloes – II. The spherical Jeans equation.<br>Monthly Notices of the Royal Astronomical Society, 2018, 476, 5669-5680.                                                | 4.4 | 22        |
| 29 | A natural boundary of dark matter haloes revealed around the minimum bias and maximum infall<br>locations. Monthly Notices of the Royal Astronomical Society, 2021, 503, 4250-4263.                                       | 4.4 | 20        |
| 30 | Co-evolution of black hole growth and star formation from a cross-correlation analysis between<br>quasars and the cosmic infrared background. Monthly Notices of the Royal Astronomical Society,<br>2015, 449, 4476-4493. | 4.4 | 19        |
| 31 | The orbital PDF: the dynamical state of Milky Way sized haloes and the intrinsic uncertainty in the determination of their masses. Monthly Notices of the Royal Astronomical Society, 2016, 456, 1017-1029.               | 4.4 | 19        |
| 32 | The orbital PDF: general inference of the gravitational potential from steady-state tracers. Monthly<br>Notices of the Royal Astronomical Society, 2016, 456, 1003-1016.                                                  | 4.4 | 19        |
| 33 | What to expect from dynamical modelling of galactic haloes. Monthly Notices of the Royal<br>Astronomical Society, 2017, 470, 2351-2366.                                                                                   | 4.4 | 17        |
| 34 | Subhaloes gone Notts: the clustering properties of subhaloes. Monthly Notices of the Royal<br>Astronomical Society, 2014, 438, 3205-3221.                                                                                 | 4.4 | 15        |
| 35 | Subhaloes gone Notts: subhaloes as tracers of the dark matter halo shape. Monthly Notices of the<br>Royal Astronomical Society, 2014, 442, 1197-1210.                                                                     | 4.4 | 14        |
| 36 | Sussing merger trees: stability and convergence. Monthly Notices of the Royal Astronomical Society, 2016, 459, 1554-1568.                                                                                                 | 4.4 | 14        |

Jiaxin Han

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A Versatile and Accurate Method for Halo Mass Determination from Phase-space Distribution of<br>Satellite Galaxies. Astrophysical Journal, 2019, 886, 69.                                                    | 4.5 | 11        |
| 38 | The Stellar Mass in and around Isolated Central Galaxies: Connections to the Total Mass Distribution<br>through Galaxy–Galaxy Lensing in the Hyper Suprime-Cam Survey. Astrophysical Journal, 2021, 919, 25. | 4.5 | 11        |
| 39 | Constraining Dark Energy with Stacked Concave Lenses. Astrophysical Journal, 2019, 874, 7.                                                                                                                   | 4.5 | 10        |
| 40 | Orbital Distribution of Infalling Satellite Halos across Cosmic Time. Astrophysical Journal, 2020, 905, 177.                                                                                                 | 4.5 | 10        |
| 41 | Environmental screening of dark matter haloes in f(R) gravity. Monthly Notices of the Royal Astronomical Society, 2017, 469, 705-715.                                                                        | 4.4 | 9         |
| 42 | What to expect from dynamical modelling of cluster haloes – I. The information content of different<br>dynamical tracers. Monthly Notices of the Royal Astronomical Society, 2021, 505, 3907-3922.           | 4.4 | 9         |
| 43 | Groups and Protocluster Candidates in the CLAUDS and HSC-SSP Joint Deep Surveys. Astrophysical<br>Journal, 2022, 933, 9.                                                                                     | 4.5 | 9         |
| 44 | Using the Modified Nearest Neighbor Method to Correct Fiber-collision Effects on Galaxy Clustering.<br>Astrophysical Journal, 2019, 872, 26.                                                                 | 4.5 | 7         |
| 45 | First measurement of the characteristic depletion radius of dark matter haloes from weak lensing.<br>Monthly Notices of the Royal Astronomical Society, 2022, 513, 4754-4769.                                | 4.4 | 7         |
| 46 | The Outermost Edges of the Milky Way Halo from Galaxy Kinematics. Astrophysical Journal Letters,<br>2021, 915, L18.                                                                                          | 8.3 | 6         |
| 47 | A machine learning approach to infer the accreted stellar mass fractions of central galaxies in the TNG100 simulation. Monthly Notices of the Royal Astronomical Society, 2022, 515, 3938-3955.              | 4.4 | 6         |
| 48 | What to expect from dynamical modelling of cluster haloes – II. Investigating dynamical state<br>indicators with Random Forest. Monthly Notices of the Royal Astronomical Society, 2022, 514,<br>5890-5904.  | 4.4 | 6         |
| 49 | The Universal Specific Merger Rate of Dark Matter Halos. Astrophysical Journal, 2022, 929, 120.                                                                                                              | 4.5 | 5         |
| 50 | FPFS Shear Estimator: Systematic Tests on the Hyper Suprime-Cam Survey First-year Data. Astrophysical<br>Journal, Supplement Series, 2020, 251, 19.                                                          | 7.7 | 3         |
| 51 | Satellite galaxies as better tracers of the Milky Way halo mass. Proceedings of the International<br>Astronomical Union, 2019, 14, 109-112.                                                                  | 0.0 | 1         |