Muhammad Sahimi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6228337/publications.pdf

Version: 2024-02-01

292 papers 13,928 citations

18482 62 h-index 99 g-index

316 all docs

316 docs citations

316 times ranked

8519 citing authors

#	Article	IF	CITATIONS
1	Flow phenomena in rocks: from continuum models to fractals, percolation, cellular automata, and simulated annealing. Reviews of Modern Physics, 1993, 65, 1393-1534.	45.6	977
2	Tortuosity in Porous Media: A Critical Review. Soil Science Society of America Journal, 2013, 77, 1461-1477.	2.2	569
3	Statistical and continuum models of fluid-solid reactions in porous media. Chemical Engineering Science, 1990, 45, 1443-1502.	3.8	382
4	A study by in situ techniques of the thermal evolution of the structure of a Mg–Al–CO3 layered double hydroxide. Chemical Engineering Science, 2002, 57, 2945-2953.	3.8	342
5	Approaching complexity by stochastic methods: From biological systems to turbulence. Physics Reports, 2011, 506, 87-162.	25.6	258
6	Multiple-point geostatistical modeling based on the cross-correlation functions. Computational Geosciences, 2012, 16, 779-797.	2.4	238
7	Asphalt flocculation and deposition: I. The onset of precipitation. AICHE Journal, 1996, 42, 10-22.	3.6	234
8	Stochastic transport in disordered systems. Journal of Chemical Physics, 1983, 78, 6849-6864.	3.0	179
9	Dispersion in flow through porous media—I. One-phase flow. Chemical Engineering Science, 1986, 41, 2103-2122.	3.8	178
10	Elastic percolation models for cohesive mechanical failure in heterogeneous systems. Physical Review B, 1986, 33, 7848-7851.	3.2	157
11	Cross-Correlation Function for Accurate Reconstruction of Heterogeneous Media. Physical Review Letters, 2013, 110, 078002.	7.8	148
12	Mechanics of disordered solids. I. Percolation on elastic networks with central forces. Physical Review B, 1993, 47, 695-702.	3.2	143
13	Machine learning in geo- and environmental sciences: From small to large scale. Advances in Water Resources, 2020, 142, 103619.	3.8	138
14	Reconstruction of three-dimensional porous media using a single thin section. Physical Review E, 2012, 85, 066709.	2.1	131
15	Pore network modelling of two-phase flow in porous rock: the effect of correlated heterogeneity. Advances in Water Resources, 2001, 24, 257-277.	3.8	130
16	Flow, Transport, and Reaction in Porous Media: Percolation Scaling, Criticalâ€Path Analysis, and Effective Medium Approximation. Reviews of Geophysics, 2017, 55, 993-1078.	23.0	130
17	Mechanics of disordered solids. II. Percolation on elastic networks with bond-bending forces. Physical Review B, 1993, 47, 703-712.	3.2	129
18	Silicon carbide membranes for gas separation applications. Journal of Membrane Science, 2007, 288, 290-297.	8.2	128

#	Article	IF	Citations
19	Invasion percolation: new algorithms and universality classes. Journal of Physics A, 1999, 32, L521-L529.	1.6	121
20	Percolation Theory of Two-Phase Relative Permeability. SPE Reservoir Engineering, 1992, 7, 123-132.	0.5	119
21	Computer simulation of particle transport processes in flow through porous media. Chemical Engineering Science, 1991, 46, 1977-1993.	3.8	109
22	Experiments and Simulation of Transport and Separation of Gas Mixtures in Carbon Molecular Sieve Membranesâ€. Journal of Physical Chemistry A, 1998, 102, 8580-8589.	2.5	102
23	Three-Dimensional Stochastic Characterization of Shale SEM Images. Transport in Porous Media, 2015, 110, 521-531.	2.6	100
24	Real-space renormalization and effective-medium approximation to the percolation conduction problem. Physical Review B, 1983, 28, 307-311.	3.2	99
25	Scaling properties of a percolation model with long-range correlations. Physical Review E, 1996, 54, 3870-3880.	2.1	99
26	Porous Silicon Carbide Sintered Substrates for High-Temperature Membranes. Industrial & Engineering Chemistry Research, 2000, 39, 3264-3271.	3.7	99
27	Asphalt flocculation and deposition: II. Formation and growth of fractal aggregates. AICHE Journal, 1996, 42, 3318-3332.	3.6	96
28	Scaling Laws for Fracture of Heterogeneous Materials and Rock. Physical Review Letters, 1996, 77, 3689-3692.	7.8	95
29	Transport and Morphological Characteristics of Polyetherimide-Based Carbon Molecular Sieve Membranes. Industrial & Degineering Chemistry Research, 1999, 38, 3367-3380.	3.7	95
30	Linking Morphology of Porous Media to Their Macroscopic Permeability by Deep Learning. Transport in Porous Media, 2020, 131, 427-448.	2.6	95
31	Nonequilibrium Molecular Dynamics Simulation of Transport of Gas Mixtures in Nanopores. Physical Review Letters, 1998, 80, 3511-3514.	7.8	89
32	Fractal distribution of earthquake hypocenters and its relation to fault patterns and percolation. Physical Review Letters, 1993, 70, 2186-2189.	7.8	88
33	Chemisorption, physisorption and hysteresis during hydrogen storage in carbon nanotubes. International Journal of Hydrogen Energy, 2014, 39, 1390-1397.	7.1	88
34	Fractal and superdiffusive transport and hydrodynamic dispersion in heterogeneous porous media. Transport in Porous Media, 1993, 13, 3-40.	2.6	87
35	Percolation Theory Generates a Physically Based Description of Tortuosity in Saturated and Unsaturated Porous Media. Soil Science Society of America Journal, 2013, 77, 1920-1929.	2.2	87
36	MS-CCSIM: Accelerating pattern-based geostatistical simulation of categorical variables using a multi-scale search in Fourier space. Computers and Geosciences, 2014, 67, 75-88.	4.2	87

#	Article	IF	CITATIONS
37	Molecular dynamics simulations of adsorption and diffusion of gases in silicon-carbide nanotubes. Journal of Chemical Physics, 2010, 132, 014310.	3.0	85
38	Elastic properties of three-dimensional percolation networks with stretching and bond-bending forces. Physical Review B, 1988, 38, 7173-7176.	3.2	84
39	DISPERSION IN DISORDERED POROUS MEDIA. Chemical Engineering Communications, 1983, 23, 329-341.	2.6	82
40	Mechanics of disordered solids. III. Fracture properties. Physical Review B, 1993, 47, 713-722.	3.2	82
41	Characterization of long-range correlations in complex distributions and profiles. Physical Review E, 1997, 56, 712-722.	2.1	81
42	Multiscale study for stochastic characterization of shale samples. Advances in Water Resources, 2016, 89, 91-103.	3.8	81
43	Preparation and reactive applications of nanoporous silicon carbide membranes. Chemical Engineering Science, 2004, 59, 4957-4965.	3.8	80
44	Invasion percolation with long-range correlations: First-order phase transition and nonuniversal scaling properties. Physical Review E, 2000, 61, 4920-4934.	2.1	78
45	Transport of large particles in flow through porous media. Physical Review A, 1987, 36, 5304-5309.	2.5	76
46	Surface tension of binary liquid–vapor mixtures: A comparison of meanâ€field and scaling theories. Journal of Chemical Physics, 1991, 95, 6749-6761.	3.0	75
47	Nonequilibrium molecular dynamics simulation of transport and separation of gases in carbon nanopores. I. Basic results. Journal of Chemical Physics, 1999, 111, 3252-3264.	3.0	75
48	Multiscale and multiresolution modeling of shales and their flow and morphological properties. Scientific Reports, 2015, 5, 16373.	3.3	74
49	Enhancing multipleâ€point geostatistical modeling: 1. Graph theory and pattern adjustment. Water Resources Research, 2016, 52, 2074-2098.	4.2	74
50	Diffusion of Large Molecules in Porous Media. Physical Review Letters, 1989, 62, 629-632.	7.8	73
51	Structural characterization of polyetherimide-based carbon molecular sieve membranes. AICHE Journal, 2000, 46, 2245-2255.	3.6	73
52	Hydrodynamics of particulate motion in porous media. Physical Review Letters, 1991, 66, 1169-1172.	7.8	71
53	Nonlinear transport processes in disordered media. AICHE Journal, 1993, 39, 369-386.	3.6	71
54	Dispersion in flow through porous media—II. Two-phase flow. Chemical Engineering Science, 1986, 41, 2123-2136.	3.8	69

#	Article	IF	Citations
55	A novel sacrificial interlayer-based method for the preparation of silicon carbide membranes. Journal of Membrane Science, 2008, 316, 73-79.	8.2	69
56	Enhancing images of shale formations by a hybrid stochastic and deep learning algorithm. Neural Networks, 2019, 118, 310-320.	5.9	69
57	Enhancing multipleâ€point geostatistical modeling: 2. Iterative simulation and multiple distance function. Water Resources Research, 2016, 52, 2099-2122.	4.2	68
58	Mapping stochastic processes onto complex networks. Journal of Statistical Mechanics: Theory and Experiment, 2009, 2009, P07046.	2.3	67
59	Critical properties of viscoelasticity of gels and elastic percolation networks. Physical Review Letters, 1990, 65, 725-728.	7.8	65
60	Data mining and machine learning for identifying sweet spots in shale reservoirs. Expert Systems With Applications, 2017, 88, 435-447.	7.6	65
61	Position-space renormalization for elastic percolation networks with bond-bending forces. Physical Review B, 1985, 31, 1671-1673.	3.2	63
62	Nonequilibrium molecular dynamics simulation of transport and separation of gases in carbon nanopores. II. Binary and ternary mixtures and comparison with the experimental data. Journal of Chemical Physics, 2000, 112, 910-922.	3.0	63
63	Imageâ€based modeling of granular porous media. Geophysical Research Letters, 2017, 44, 4738-4746.	4.0	59
64	Accelerating geostatistical simulations using graphics processing units (GPU). Computers and Geosciences, 2012, 46, 51-59.	4.2	58
65	Highly permeable porous silicon carbide support tubes for the preparation of nanoporous inorganic membranes. Journal of Membrane Science, 2014, 451, 192-204.	8.2	57
66	Stochastic shale permeability matching: Three-dimensional characterization and modeling. International Journal of Coal Geology, 2016, 165, 231-242.	5.0	57
67	Statistical Mechanics and Molecular Simulation of Adsorption in Microporous Materials: Pillared Clays and Carbon Molecular Sieve Membranesâ€. Journal of Physical Chemistry B, 2000, 104, 3892-3905.	2.6	55
68	Nonequilibrium molecular dynamics simulations of transport and separation of gas mixtures in nanoporous materials. Physical Review E, 2000, 62, 6942-6948.	2.1	54
69	Pore-scale simulation of flow of CO2 and brine in reconstructed and actual 3D rock cores. Journal of Petroleum Science and Engineering, 2017, 155, 21-33.	4.2	54
70	Percolation and fracture in disordered solids and granular media: Approach to a fixed point. Physical Review Letters, 1992, 68, 608-611.	7.8	53
71	Field evaluation of carbon molecular sieve membranes for the separation and purification of hydrogen from coal- and biomass-derived syngas. Journal of Membrane Science, 2014, 450, 81-92.	8.2	53
72	Molecular dynamics simulation of pressure-driven water flow in silicon-carbide nanotubes. Journal of Chemical Physics, 2011, 135, 204509.	3.0	52

#	Article	IF	CITATIONS
73	Reconstruction of nonstationary disordered materials and media: Watershed transform and cross-correlation function. Physical Review E, 2015, 91, 032401.	2.1	52
74	Molecular Dynamics Simulation of Hydration and Swelling of Mixed-Layer Clays. Journal of Physical Chemistry C, 2018, 122, 14631-14639.	3.1	52
75	Turbulencelike Behavior of Seismic Time Series. Physical Review Letters, 2009, 102, 014101.	7.8	49
76	Long-range correlated percolation and flow and transport in heterogeneous porous media. Journal De Physique, I, 1994, 4, 1263-1268.	1.2	49
77	Transport of macromolecules in porous media. Journal of Chemical Physics, 1992, 96, 4718-4728.	3.0	48
78	Effect of long-range correlations on transport phenomena in disordered media. AICHE Journal, 1995, 41, 229-240.	3.6	48
79	Fabrication of Graphene–Polyimide Nanocomposites with Superior Electrical Conductivity. ACS Applied Materials & Samp; Interfaces, 2017, 9, 43230-43238.	8.0	47
80	Coarsening of Heterogeneous Media: Application of Wavelets. Physical Review Letters, 1997, 79, 4385-4388.	7.8	46
81	Adsorption Isotherms of Arsenic on Conditioned Layered Double Hydroxides in the Presence of Various Competing Ions. Industrial & Double Hydroxides in the Presence of Various Competing Ions. Industrial & Double Hydroxides in the Presence of Various Competing Ions. Industrial & Double Hydroxides in the Presence of Various Competing Ions.	3.7	46
82	Dispersion in porous media, continuous-time random walks, and percolation. Physical Review E, 2012, 85, 016316.	2.1	46
83	Overview of Laboratory and Modeling Studies of Carbon Dioxide Sequestration in Coal Beds. Industrial & Dioxide Sequestration in Coal Beds.	3.7	45
84	Localization of Elastic Waves in Heterogeneous Media with Off-Diagonal Disorder and Long-Range Correlations. Physical Review Letters, 2005, 94, 165505.	7.8	44
85	Analysis of Non-stationary Data for Heart-rate Fluctuations in Terms of Drift and Diffusion Coefficients. Journal of Biological Physics, 2006, 32, 117-128.	1.5	44
86	Self-affine fractal distributions of the bulk density, elastic moduli, and seismic wave velocities of rock. Physical Review E, 2005, 71, 046301.	2.1	43
87	Pore network simulation of imbibition into paper during coating: I. Model development. AICHE Journal, 2001, 47, 519-535.	3.6	42
88	Study of CO2 Diffusion and Adsorption on Calcined Layered Double Hydroxides: The Effect of Particle Size. Industrial & Engineering Chemistry Research, 2008, 47, 6150-6157.	3.7	42
89	Multiresolution Wavelet Scale Up of Unstable Miscible Displacements in Flow Through Heterogeneous Porous Media. Transport in Porous Media, 2004, 57, 75-102.	2.6	40
90	Molecular Dynamics Simulation of Hydration and Swelling of Mixed-Layer Clays in the Presence of Carbon Dioxide. Journal of Physical Chemistry C, 2019, 123, 4243-4255.	3.1	40

#	Article	IF	Citations
91	Toward a Process-Based Molecular Model of SiC Membranes. 1. Development of a Reactive Force Field. Journal of Physical Chemistry C, 2013, 117, 3308-3319.	3.1	39
92	Reconstruction, optimization, and design of heterogeneous materials and media: Basic principles, computational algorithms, and applications. Physics Reports, 2021, 939, 1-82.	25.6	39
93	Upscaling of the permeability by multiscale wavelet transformations and simulation of multiphase flows in heterogeneous porous media. Computational Geosciences, 2009, 13, 187-214.	2.4	38
94	Geostatistical Simulation and Reconstruction of Porous Media by a Cross-Correlation Function and Integration of Hard and Soft Data. Transport in Porous Media, 2015, 107, 871-905.	2.6	38
95	Nucleation of Salt Crystals in Clay Minerals: Molecular Dynamics Simulation. Journal of Physical Chemistry Letters, 2017, 8, 3166-3172.	4.6	38
96	Renormalization group analysis and numerical simulation of propagation and localization of acoustic waves in heterogeneous media. Physical Review B, 2007, 75, .	3.2	37
97	Hydrogen sorption hysteresis and superior storage capacity of silicon-carbide nanotubes over their carbon counterparts. International Journal of Hydrogen Energy, 2014, 39, 21107-21115.	7.1	37
98	Thermal Evolution of the Structure of a Mgâ-'Alâ-'CO3Layered Double Hydroxide:Â Sorption Reversibility Aspects. Industrial & Samp; Engineering Chemistry Research, 2004, 43, 4559-4570.	3.7	36
99	Molecular dynamics simulation of diffusion in pillared clays. AICHE Journal, 1995, 41, 456-468.	3.6	35
100	Wavelet identification of the spatial distribution of fractures. Geophysical Research Letters, 2001, 28, 611-614.	4.0	35
101	Pore network model of transport and separation of binary gas mixtures in nanoporous membranes. Journal of Membrane Science, 2008, 315, 48-57.	8.2	35
102	Pore-network model of evaporation-induced salt precipitation in porous media: The effect of correlations and heterogeneity. Advances in Water Resources, 2018, 112, 59-71.	3.8	35
103	Saturation Dependence of Nonâ€Fickian Transport in Porous Media. Water Resources Research, 2019, 55, 1153-1166.	4.2	35
104	Transient Diffusion and Conduction in Heterogeneous Media:  Beyond the Classical Effective-Medium Approximation. Industrial & Engineering Chemistry Research, 1997, 36, 3043-3052.	3.7	34
105	Gas and solute diffusion in partially saturated porous media: Percolation theory and Effective Medium Approximation compared with lattice Boltzmann simulations. Journal of Geophysical Research: Solid Earth, 2015, 120, 182-190.	3.4	34
106	Modeling relative permeability of water in soil: Application of effectiveâ€medium approximation and percolation theory. Water Resources Research, 2016, 52, 5025-5040.	4.2	34
107	ON THE DETERMINATION OF TRANSPORT PROPERTIES OF DISORDERED SYSTEMS. Chemical Engineering Communications, 1988, 64, 177-195.	2.6	33
108	Upscaling and Simulation of Waterflooding in Heterogeneous Reservoirs Using Wavelet Transformations: Application to the SPE-10 Model. Transport in Porous Media, 2008, 72, 311-338.	2.6	33

#	Article	IF	CITATIONS
109	Scaling, multifractality, and long-range correlations in well log data of large-scale porous media. Physica A: Statistical Mechanics and Its Applications, 2011, 390, 2096-2111.	2.6	33
110	Use of microseismicity for determining the structure of the fracture network of large-scale porous media. Physical Review E, $2013,87,\ldots$	2.1	33
111	Computer simulation of the effect of deformation on the morphology and flow properties of porous media. Physical Review E, 2016, 94, 042903.	2.1	33
112	Experimental investigation of hydrogen adsorption in doped silicon-carbide nanotubes. International Journal of Hydrogen Energy, 2016, 41, 369-374.	7.1	33
113	Adsorption-induced swelling of porous media. International Journal of Greenhouse Gas Control, 2017, 57, 1-13.	4.6	33
114	Efficient Transport Between Disjoint Nanochannels by a Water Bridge. Physical Review Letters, 2019, 122, 214506.	7.8	33
115	Dynamics of two-phase flow in porous media: Simultaneous invasion of two fluids. AICHE Journal, 1999, 45, 1365-1382.	3.6	32
116	Pore network model of deactivation of immobilized glucose isomerase in packed-bed reactors. Part III: Multiscale modelling. Chemical Engineering Science, 2003, 58, 4935-4951.	3.8	32
117	Preparation of Hydrotalcite Thin Films Using an Electrophoretic Technique. Industrial & Samp; Engineering Chemistry Research, 2008, 47, 9127-9132.	3.7	32
118	Calculation of the effective permeabilities of field-scale porous media. Chemical Engineering Science, 2000, 55, 4495-4513.	3.8	31
119	Fabrication of silicon carbide membranes on highly permeable supports. Journal of Membrane Science, 2017, 537, 239-247.	8.2	31
120	Nonuniversality of invasion percolation in two-dimensional systems. Physical Review E, 2002, 65, 035101.	2.1	30
121	Pore network simulation of fluid imbibition into paper during coating: II. Characterization of paper's morphology and computation of its effective permeability tensor. Chemical Engineering Science, 2004, 59, 2265-2280.	3.8	30
122	Network model for the evolution of the pore structure of silicon-carbide membranes during their fabrication. Journal of Membrane Science, 2010, 356, 138-146.	8.2	30
123	Process Intensification in Hydrogen Production from Biomass-Derived Syngas. Industrial & Description of the Engineering Chemistry Research, 2010, 49, 10986-10993.	3.7	30
124	Two-phase flow of CO2-brine in a heterogeneous sandstone: Characterization of the rock and comparison of the lattice-Boltzmann, pore-network, and direct numerical simulation methods. Advances in Water Resources, 2020, 135, 103469.	3.8	30
125	Pore network simulation of fluid imbibition into paper during coating—III: modelling of the two-phase flow. Chemical Engineering Science, 2004, 59, 2281-2296.	3.8	29
126	Dynamic renormalization group analysis of propagation of elastic waves in two-dimensional heterogeneous media. Physical Review B, 2008, 77, .	3.2	29

#	Article	IF	CITATIONS
127	Computer simulation of gas generation and transport in landfills. V: Use of artificial neural network and the genetic algorithm for short- and long-term forecasting and planning. Chemical Engineering Science, 2011, 66, 2646-2659.	3.8	29
128	Morphology, propagation dynamics and scaling characteristics of drying fronts in porous media. Geophysical Research Letters, 2012, 39, .	4.0	29
129	Multiresolution wavelet coarsening and analysis of transport in heterogeneous media. Physica A: Statistical Mechanics and Its Applications, 2002, 316, 160-188.	2.6	28
130	Atomistic simulation of nanoporous layered double hydroxide materials and their properties. I. Structural modeling. Journal of Chemical Physics, 2005, 122, 214713.	3.0	28
131	Generation of long-range correlations in large systems as an optimization problem. Physical Review E, 2006, 73, 056121.	2.1	28
132	Development of optimal models of porous media by combining static and dynamic data: The permeability and porosity distributions. Physical Review E, 2007, 75, 056311.	2.1	28
133	Determination of the true pore size distribution by flow permporometry experiments: An invasion percolation model. Journal of Membrane Science, 2011, 367, 55-62.	8.2	28
134	A Study of the Role of Microfractures in Counter-Current Spontaneous Imbibition by Lattice Boltzmann Simulation. Transport in Porous Media, 2020, 133, 313-332.	2.6	28
135	Diffusion, adsorption, and reaction in pillared clays. I. Rodâ€ike molecules in a regular pore space. Journal of Chemical Physics, 1990, 92, 5107-5118.	3.0	27
136	Molecular dynamics simulation of gas mixtures in porous media. I. Adsorption. Journal of Chemical Physics, 1998, 108, 2178-2188.	3.0	27
137	Nonequilibrium molecular dynamics simulations of transport and separation of supercritical fluid mixtures in nanoporous membranes. I. Results for a single carbon nanopore. Journal of Chemical Physics, 2003, 119, 6810-6822.	3.0	27
138	The Preparation and Characterization of Hydrotalcite Thin Films. Industrial & Engineering Chemistry Research, 2009, 48, 5794-5801.	3.7	27
139	Electrical Conductivity of Partially Saturated Packings of Particles. Transport in Porous Media, 2017, 118, 1-16.	2.6	27
140	Physics- and image-based prediction of fluid flow and transport in complex porous membranes and materials by deep learning. Journal of Membrane Science, 2021, 622, 119050.	8.2	27
141	Effect of polystyrene on the morphology and physical properties of silicon carbide nanofibers. Materials Chemistry and Physics, 2009, 118, 259-263.	4.0	26
142	Nonuniversality of the Archie exponent due to multifractality of resistivity well logs. Geophysical Research Letters, 2015, 42, 10,655.	4.0	26
143	Nanojunction Effects on Water Flow in Carbon Nanotubes. Scientific Reports, 2018, 8, 7752.	3.3	26
144	Image-based modeling of gas adsorption and deformation in porous media. Scientific Reports, 2018, 8, 8249.	3.3	26

#	Article	IF	Citations
145	Statistical mechanics and molecular simulation of adsorption of ternary gas mixtures in nanoporous materials. Journal of Chemical Physics, 2001, 114, 7196-7210.	3.0	25
146	Development of optimal models of porous media by combining static and dynamic data: The porosity distribution. Physical Review E, 2006, 74, 026308.	2.1	25
147	Localization properties of acoustic waves in the random-dimer media. Physical Review B, 2008, 78, .	3.2	25
148	Fabrication of high-surface area nanoporous SiOC ceramics using pre-ceramic polymer precursors and a sacrificial template: Precursor effects. Microporous and Mesoporous Materials, 2017, 241, 338-345.	4.4	25
149	Site-bond invasion percolation with fluid trapping. Physica A: Statistical Mechanics and Its Applications, 1998, 260, 231-243.	2.6	24
150	Molecular dynamics simulations of transport and separation of carbon dioxide–alkane mixtures in carbon nanopores. Journal of Chemical Physics, 2004, 120, 8172-8185.	3.0	24
151	Discrete simulation of the dynamics of spread of extreme opinions in a society. Physica A: Statistical Mechanics and Its Applications, 2006, 364, 537-543.	2.6	24
152	Preparation of Polyetherimide Nanoparticles by an Electrospray Technique. Industrial & Engineering Chemistry Research, 2007, 46, 3348-3357.	3.7	24
153	On the Use of Porous and Nonporous Fillers in the Fabrication of Silicon Carbide Membranes. Industrial & Engineering Chemistry Research, 2013, 52, 10269-10275.	3.7	24
154	Toward a Process-Based Molecular Model of SiC Membranes. 2. Reactive Dynamics Simulation of the Pyrolysis of Polymer Precursor To Form Amorphous SiC. Journal of Physical Chemistry C, 2013, 117, 3320-3329.	3.1	24
155	Hertzâ€Mindlin Theory of Contacting Grains and the Effectiveâ€Medium Approximation for the Permeability of Deforming Porous Media. Geophysical Research Letters, 2019, 46, 8039-8045.	4.0	24
156	Molecular Dynamics Study of the Effect of Layer Charge and Interlayer Cations on Swelling of Mixed-Layer Chlorite–Montmorillonite Clays. Journal of Physical Chemistry C, 2020, 124, 2553-2561.	3.1	24
157	Simulating fluid flow in complex porous materials by integrating the governing equations with deep-layered machines. Npj Computational Materials, 2021, 7, .	8.7	24
158	Atomistic simulation of nanoporous layered double hydroxide materials and their properties. II. Adsorption and diffusion. Journal of Chemical Physics, 2007, 127, 224701.	3.0	23
159	Experimental studies and computer simulation of the preparation of nanoporous silicon-carbide membranes by chemical-vapor infiltration/chemical-vapor deposition techniques. Chemical Engineering Science, 2008, 63, 1460-1470.	3.8	23
160	Microstructural characterization of random packings of cubic particles. Scientific Reports, 2016, 6, 35024.	3.3	23
161	On correction to scaling for two- and three-dimensional scalar and vector percolation. Journal of Statistical Physics, 1991, 62, 453-461.	1.2	22
162	Computer simulation of gas generation and transport in landfills. III: Development of lanfills' optimal model. Chemical Engineering Science, 2007, 62, 6378-6390.	3.8	22

#	Article	IF	CITATIONS
163	Molecular simulation of protein dynamics in nanopores. II. Diffusion. Journal of Chemical Physics, 2009, 130, 085105.	3.0	22
164	Upscaled Unstructured Computational Grids for Efficient Simulation of Flow in Fractured Porous Media. Transport in Porous Media, 2010, 83, 195-218.	2.6	22
165	Upscaling of solute transport in disordered porous media by wavelet transformations. Advances in Water Resources, 2016, 96, 180-189.	3.8	22
166	Higher-order correlation functions in disordered media: Computational algorithms and application to two-phase heterogeneous materials. Physical Review E, 2018, 98, .	2.1	22
167	Title is missing!. Transport in Porous Media, 2000, 41, 325-347.	2.6	21
168	Numerical simulation of the localization of elastic waves in two- and three-dimensional heterogeneous media. Physical Review B, 2008, 78, .	3.2	21
169	Analysis of Cross Correlations Between Well Logs of Hydrocarbon Reservoirs. Transport in Porous Media, 2011, 90, 445-464.	2.6	21
170	A stochastic multiscale algorithm for modeling complex granular materials. Granular Matter, 2018, 20, 1.	2.2	21
171	Diffusion in disordered systems with multiple families of transport paths. Physical Review Letters, 1993, 70, 2581-2584.	7.8	20
172	Title is missing!. Transport in Porous Media, 2001, 44, 465-485.	2.6	20
173	Pore network model of deactivation of immobilized glucose isomerase in packed-bed reactors. Chemical Engineering Science, 2001, 56, 2803-2819.	3.8	20
174	Fluid flow and conduction in two-dimensional fractures with rough, self-affine surfaces: A comparative study. Journal of Geophysical Research, 2003, 108, .	3.3	20
175	Molecular pore-network model for nanoporous materials. I: Application to adsorption in silicon-carbide membranes. Journal of Membrane Science, 2009, 335, 5-12.	8.2	20
176	Molecular pore-network model for nanoporous materials. II: Application to transport and separation of gaseous mixtures in silicon-carbide membranes. Journal of Membrane Science, 2009, 345, 323-330.	8.2	20
177	Stochastic transport in heterogeneous media with multiple families of transport paths. Physical Review E, 1993, 48, 2776-2785.	2.1	19
178	Molecular dynamics simulations of transport and separation of supercritical carbon dioxide-alkane mixtures in supported membranes. Chemical Engineering Science, 2007, 62, 2777-2789.	3.8	19
179	Molecular simulation of protein dynamics in nanopores. I. Stability and folding. Journal of Chemical Physics, 2008, 128, 115105.	3.0	19
180	Efficient Computational Strategies for Solving Global Optimization Problems. Computing in Science and Engineering, 2010, 12, 74-83.	1.2	19

#	Article	IF	Citations
181	Quantifying accuracy of stochastic methods of reconstructing complex materials by deep learning. Physical Review E, 2020, 101, 043301.	2.1	19
182	Force distribution, multiscaling, and fluctuations in disordered elastic media. Physical Review B, 1989, 40, 4975-4980.	3.2	18
183	Hydrogen Production from Biomass-Derived Syngas Using a Membrane Reactor Based Process. Industrial & Department of the Process	3.7	18
184	Solubility and diffusivity of H2 and CO2 in the ionic liquid [bmim][PF6]. International Journal of Hydrogen Energy, 2015, 40, 8713-8720.	7.1	18
185	Molecular Simulation Study of Gas Solubility and Diffusion in a Polymer-Boron Nitride Nanotube Composite. Journal of Physical Chemistry B, 2016, 120, 1273-1284.	2.6	18
186	Effect of deformation on the thermal conductivity of granular porous media with rough grain surface. Geophysical Research Letters, 2017, 44, 8285-8293.	4.0	18
187	Rapid Learning-Based and Geologically Consistent History Matching. Transport in Porous Media, 2018, 122, 279-304.	2.6	18
188	Upscaling of Geological Models of Oil Reservoirs with Unstructured Grids Using Lifting-Based Graph Wavelet Transforms. Transport in Porous Media, 2019, 127, 661-684.	2.6	18
189	Diffusion of Ionic Particles in Charged Disordered Media. Physical Review Letters, 1999, 82, 735-738.	7.8	17
190	Grid coarsening, simulation of transport processes in, and scale-up of heterogeneous media: Application of multiresolution wavelet transformations. Mechanics of Materials, 2006, 38, 772-785.	3.2	17
191	Confinement in nanopores can destabilize $\hat{l}\pm$ -helix folding proteins and stabilize the \hat{l}^2 structures. Journal of Chemical Physics, 2011, 135, 125101.	3.0	17
192	Regulation of migration of chemotactic tumor cells by the spatial distribution of collagen fiber orientation. Physical Review E, 2019, 99, 062414.	2.1	17
193	Shape of a Wave Front in a Heterogenous Medium. Physical Review Letters, 2006, 96, 075507.	7.8	15
194	Computer simulation of gas generation and transport in landfills: Vlâ€"Dynamic updating of the model using the ensemble Kalman filter. Chemical Engineering Science, 2012, 74, 69-78.	3.8	15
195	lodine k-edge dual energy imaging reveals the influence of particle size distribution on solute transport in drying porous media. Scientific Reports, 2018, 8, 10731.	3.3	15
196	On the universality of geometrical and transport exponents of rigidity percolation. Journal of Statistical Physics, 1992, 69, 887-895.	1.2	14
197	Percolation with Two Invaders and Two Defenders: Volatile Clusters, Oscillations, and Scaling. Physical Review Letters, 1998, 80, 3248-3251.	7.8	14
198	Mechanical properties of heat-treated organic foams. Physical Review E, 2013, 87, .	2.1	14

#	Article	IF	CITATIONS
199	Fabrication of high-surface area nanoporous SiOC materials using pre-ceramic polymer blends and a sacrificial template. Microporous and Mesoporous Materials, 2015, 210, 77-85.	4.4	14
200	Packing of nonoverlapping cubic particles: Computational algorithms and microstructural characteristics. Physical Review E, 2016, 94, 062901.	2.1	14
201	Acoustic wave propagation in heterogeneous two-dimensional fractured porous media. Physical Review E, 2016, 93, 063305.	2.1	14
202	Statistical characterization of microstructure of packings of polydisperse hard cubes. Physical Review E, 2017, 95, 052902.	2.1	14
203	Scaling behavior of permeability and conductivity anisotropy near the percolation threshold. Journal of Statistical Physics, 1994, 74, 1301-1308.	1.2	13
204	Numerical simulation of ac conduction in three-dimensional heterogeneous materials. Physical Review B, 2006, 73, .	3.2	13
205	Numerical simulations of localization of electromagnetic waves in two- and three-dimensional disordered media. Physical Review B, 2009, 80, .	3.2	13
206	Controlled nucleation and growth of CdS nanoparticles by turbulent dispersion. Physical Review E, 2010, 81, 026304.	2.1	13
207	Pore-Network Simulation of Unstable Miscible Displacements in Porous Media. Transport in Porous Media, 2016, 113, 511-529.	2.6	13
208	Theoretical Model and Numerical Simulation of Adsorption and Deformation in Flexible Metal–Organic Frameworks. Journal of Physical Chemistry C, 2018, 122, 9465-9473.	3.1	13
209	Formation of a Stable Bridge between Two Disjoint Nanotubes with Single-File Chains of Water. Journal of Physical Chemistry B, 2020, 124, 8340-8346.	2.6	13
210	Fractal Dimension in a Percolation Model of Fluid Displacement. Physical Review Letters, 1985, 55, 1698-1698.	7.8	12
211	Monte Carlo simulation of two-phase flow in porous media: Invasion with two invaders and two defenders. Physica A: Statistical Mechanics and Its Applications, 1999, 267, 1-33.	2.6	12
212	Molecular pore network models of nanoporous materials. Physica B: Condensed Matter, 2003, 338, 291-297.	2.7	12
213	Transport properties of composite solid films with rough self-affine surfaces. Physical Review B, 2006, 74, .	3.2	12
214	Anomalous fluctuations of vertical velocity of Earth and their possible implications for earthquakes. Physical Review E, 2010, 82, 036105.	2.1	12
215	Dynamics of supercooled water in nanotubes: Cage correlation function and diffusion coefficient. Physical Review E, 2015, 92, 030301.	2.1	12
216	Toward a process-based molecular model of SiC membranes: III. Prediction of transport and separation of binary gaseous mixtures based on the atomistic reactive force field. Journal of Membrane Science, 2015, 473, 85-93.	8.2	12

#	Article	IF	Citations
217	Molecular modelling of adsorption of gas mixtures in montmorillonites intercalated with Al13-complex pillars. Molecular Physics, 2004, 102, 1447-1467.	1.7	11
218	A PERCOLATION MODEL OF MOBILE AD-HOC NETWORKS. International Journal of Modern Physics C, 2009, 20, 1871-1902.	1.7	11
219	STRUCTURAL AND DYNAMICAL PROPERTIES OF BRANCHED POLYMERS AND GELS AND THEIR RELATION WITH ELASTIC PERCOLATION NETWORKS. Modern Physics Letters B, 1992, 06, 507-520.	1.9	10
220	Characterization and modelling of oil reservoirs and groundwater aquifers: application of Wavelet Transformations. Granular Matter, 2001, 3, 3-14.	2.2	10
221	Supercritical fluids in porous composite materials: Direction-dependent flow properties. Physical Review E, 2006, 73, 036312.	2.1	10
222	Reply to "Comment on  Renormalization group analysis and numerical simulation of propagation and localization of acoustic waves in heterogeneous media' ― Physical Review B, 2008, 77, .	3.2	10
223	Upscaling of the Geological Models of Large-Scale Porous Media Using Multiresolution Wavelet Transformations. Journal of Heat Transfer, 2009, 131, .	2.1	10
224	First principles-based multiparadigm, multiscale strategy for simulating complex materials processes with applications to amorphous SiC films. Journal of Chemical Physics, 2015, 142, 174703.	3.0	10
225	Interoccurrence time statistics in fully-developed turbulence. Scientific Reports, 2016, 6, 27452.	3.3	10
226	Fractals in Porous Media: From Pore to Field Scale. Materials Research Society Symposia Proceedings, 1994, 367, 203.	0.1	9
227	Efficient numerical simulation of ac conduction in heterogeneous materials at low temperatures. Physical Review B, 2005, 71, .	3.2	9
228	Analysis of pressure fluctuations in fluidized beds. III. The significance of the cross correlations. Chemical Engineering Science, 2013, 101, 390-400.	3.8	9
229	Electro-osmotic flow in disordered porous and fractured media. Physical Review E, 2014, 89, 033007.	2.1	9
230	Fabrication of nanoporous silicon oxycarbide materials using layered double-hydroxide as a sacrificial template. Microporous and Mesoporous Materials, 2014, 190, 267-274.	4.4	9
231	Static and dynamic properties of supercooled water in small nanotubes. Journal of Chemical Physics, 2016, 145, 024502.	3.0	9
232	Dynamics of proteins aggregation. I. Universal scaling in unbounded media. Journal of Chemical Physics, 2016, 145, 134306.	3.0	9
233	Role of the Interplay Between the Internal and External Conditions in Invasive Behavior of Tumors. Scientific Reports, 2018, 8, 5968.	3.3	9
234	Dynamics of proteins aggregation. II. Dynamic scaling in confined media. Journal of Chemical Physics, 2018, 148, 104305.	3.0	9

#	Article	IF	CITATIONS
235	Effect of heterogeneity and spatial correlations on the structure of a tumor invasion front in cellular environments. Physical Review E, 2019, 100, 062409.	2.1	9
236	Estimating Dispersion Coefficient in Flow Through Heterogeneous Porous Media by a Deep Convolutional Neural Network. Geophysical Research Letters, 2021, 48, e2021GL094443.	4.0	9
237	Enhanced thermal fingering in a shear-thinning fluid flow through porous media: Dynamic pore network modeling. Physics of Fluids, 2022, 34, .	4.0	9
238	HIGH-DIMENSIONAL AND VERY LARGE CELLULAR AUTOMATA FOR IMMUNOLOGICAL SHAPE SPACE. International Journal of Modern Physics C, 1993, 04, 401-408.	1.7	8
239	Effect of Elastic Deformation and Rough Grain Surface on Heat Conduction in Partially Saturated Granular Porous Media. Water Resources Research, 2018, 54, 9533-9548.	4.2	8
240	Complex Behavior of Ordered and Icelike Water in Carbon Nanotubes near Its Bulk Boiling Point. Journal of Physical Chemistry Letters, 2018, 9, 4746-4752.	4.6	8
241	Molecular Dynamics Study of Structure, Folding, and Aggregation of Poly-PR and Poly-GR Proteins. Biophysical Journal, 2021, 120, 64-72.	0.5	8
242	Exact Analysis of Level-Crossing Statistics for $(d+1)$ -Dimensional Fluctuating Surfaces. Journal of Statistical Physics, 2006, 124, 1471-1490.	1.2	7
243	Analysis of porosity distribution of large-scale porous media and their reconstruction by Langevin equation. Physical Review E, 2011, 83, 026309.	2.1	7
244	Wave propagation in disordered fractured porous media. Physical Review E, 2014, 89, 023301.	2.1	7
245	Exact enumeration approach to first-passage time distribution of non-Markov random walks. Physical Review E, 2019, 99, 062101.	2.1	7
246	Molecular dynamics study of structure, folding, and aggregation of poly-glycine-alanine (Poly-GA). Journal of Chemical Physics, 2019, 150, 144307.	3.0	7
247	Graphyne-3: a highly efficient candidate for separation of small gas molecules from gaseous mixtures. Scientific Reports, 2021, 11, 16325.	3.3	7
248	Speeding-up image-based simulation of two-phase flow in porous media with lattice-Boltzmann method using three-dimensional curvelet transforms. Physics of Fluids, 2021, 33, .	4.0	7
249	Effect of poreâ€scale heterogeneity on scaleâ€dependent permeability: Poreâ€network simulation and finiteâ€size scaling analysis. Water Resources Research, 0, , e2021WR030664.	4.2	7
250	ANALYSIS AND SIMULATION OF LONG-RANGE CORRELATIONS IN CURVED SPACE. International Journal of Modern Physics C, 2009, 20, 1211-1232.	1.7	6
251	Ensemblesâ€based and GAâ€based optimization for landfill gas production. AICHE Journal, 2014, 60, 2063-2071.	3.6	6
252	Thermal Conduction in Deforming Isotropic and Anisotropic Granular Porous Media with Rough Grain Surface. Transport in Porous Media, 2018, 124, 221-236.	2.6	6

#	Article	IF	Citations
253	sDMD: An open source program for discontinuous molecular dynamics simulation of protein folding and aggregation. Computer Physics Communications, 2020, 247, 106873.	7.5	6
254	Efficient Imageâ€Based Simulation of Flow and Transport in Heterogeneous Porous Media: Application of Curvelet Transforms. Geophysical Research Letters, 2020, 47, e2019GL085671.	4.0	6
255	Coherence index and curvelet transformation for denoising geophysical data. Physical Review E, 2014, 90, 042810.	2.1	5
256	Molecular Dynamics Simulation of Transport and Separation of Carbon Dioxide–Alkane Mixtures in a Nanoporous Membrane Under Sub- and Supercritical Conditions. Transport in Porous Media, 2016, 115, 495-518.	2.6	5
257	Editorial to the Special Issue on Reconstruction of Porous Media and Materials and Its Applications. Transport in Porous Media, 2018, 125, 1-3.	2.6	5
258	Morphology and kinetics of random sequential adsorption of superballs: From hexapods to cubes. Physical Review E, 2019, 100, 020602.	2.1	5
259	Sliding friction between two silicon-carbide surfaces. Journal of Applied Physics, 2019, 125, .	2.5	5
260	Phase transitions, percolation, fracture of materials, and deep learning. Physical Review E, 2020, 102, 011001.	2.1	5
261	Identifying the Optimal Path and Computing the Threshold Pressure for Flow of Bingham Fluids Through Heterogeneous Porous Media. Transport in Porous Media, 2020, 135, 779-798.	2.6	5
262	Transport through bootstrap percolation clusters. Journal De Physique, I, 1991, 1, 685-692.	1.2	5
263	Universal Intrinsic Dynamics and Freezing of Water in Small Nanotubes. Journal of Physical Chemistry C, 2021, 125, 946-956.	3.1	5
264	Random walks, transport, and dispersion in porous media. AIP Conference Proceedings, 1984, , .	0.4	4
265	Scaling Laws for Transport, Mechanical and Fracture Properties of Disordered Materials. Materials Research Society Symposia Proceedings, 1990, 207, 201.	0.1	4
266	Scaling Properties of a Spin Model of Microemulsions. Physical Review Letters, 1994, 73, 1182-1185.	7.8	4
267	Nanoscale detection of metastable states in porous and granular media. Journal of Applied Physics, 2020, 127, 024901.	2.5	4
268	Wetting and Drying Transitions of Water Nanodroplets on Suspended Graphene Bilayers. Journal of Physical Chemistry C, 2020, 124, 28152-28158.	3.1	4
269	Computer Simulations of Diffusion, Adsorption and Reaction of Organic Molecules in Pillared Clays. Materials Research Society Symposia Proceedings, 1987, 111, 271.	0.1	3
270	Discrete stochastic model for self-renewal and differentiation of progenitor cells. Physical Review E, 1997, 55, R2111-R2114.	2.1	3

#	Article	IF	Citations
271	Propagation and localization of acoustic and elastic waves in heterogeneous materials: renormalization group analysis and numerical simulations. Acta Mechanica, 2009, 205, 197-222.	2.1	3
272	Effect of the geometry of confining media on the stability and folding rate of \hat{l} ±-helix proteins. Journal of Chemical Physics, 2018, 148, 194305.	3.0	3
273	Flow and Transport Properties of Deforming Porous Media. II. Electrical Conductivity. Transport in Porous Media, 2021, 138, 611-636.	2.6	3
274	A personal perspective on prediction of saline water evaporation from porous media. Drying Technology, 0, , $1\text{-}6$.	3.1	3
275	Exact Lyapunov exponent of the harmonic magnon modes of one-dimensional Heisenberg-Mattis spin glasses. Physical Review B, 2008, 77, .	3.2	2
276	Direct Modeling of Granular Materials. , 2017, , .		2
277	Speeding-up Simulation of Multiphase Flow in Digital Images of Heterogeneous Porous Media by Curvelet Transformation. Transport in Porous Media, 2021, 137, 215-232.	2.6	2
278	Fast simulation of two-phase flow in three-dimensional digital images of heterogeneous porous media using multiresolution curvelet transformation. Advances in Water Resources, 2021, 150, 103882.	3.8	2
279	Flow and Transport Properties of Deforming Porous Media. I. Permeability. Transport in Porous Media, 2021, 138, 577-609.	2.6	2
280	WAVELET TRANSFORMATIONS AND DATA PROCESSING: APPLICATION TO CHARACTERIZATION AND SIMULATION OF LARGE-SCALE POROUS MEDIA. , 2000, , 83-111.		2
281	Characterization of Geology of, and Flow and Transport in, Field-scale Porous Media. , 2000, , 113-170.		2
282	Molecular dynamics simulation of formation and growth of CdS nanoparticles. Molecular Simulation, 2014, 40, 361-369.	2.0	1
283	Denoising of Seismic Data Using Curvelet Transformation: The Effect of on the Content of the Data. , 2015, , .		1
284	Elastic moduli of body-centered cubic lattice near rigidity percolation threshold: Finite-size effects and evidence for first-order phase transition. Physical Review E, 2021, 103, 042314.	2.1	1
285	Molecular origin of sliding friction and flash heating in rock and heterogeneous materials. Scientific Reports, 2020, 10, 22264.	3.3	1
286	Statistical Models of Transport and Reaction in Porous Media and Their Applications in Catalysis. ACS Symposium Series, 1989, , 158-178.	0.5	0
287	Large Scale Computer Simulations of Static and Dynamic Properties of Disordered Materials. Molecular Simulation, 1991, 8, 1-22.	2.0	0
288	Monte Carlo Simulation of a Lattice Model of Microemulsions in Porous Media. Materials Research Society Symposia Proceedings, 1994, 366, 95.	0.1	0

#	Article	IF	CITATIONS
289	Computer Simulation of Diffusion and Adsorption in Pillared Clays. Materials Research Society Symposia Proceedings, 1994, 368, 357.	0.1	0
290	Title is missing!. Journal of Statistical Physics, 2002, 109, 331-333.	1.2	0
291	Percolation and Polymer Morphology and Rheology. , 2021, , 379-404.		0
292	EXAMPLES OF FRACTALS IN SOIL MECHANICS. , 1994, , 421-431.		0