Vijay A Rathinam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6228264/publications.pdf

Version: 2024-02-01

46 papers 11,090 citations

30 h-index 223800 46 g-index

46 all docs

46 docs citations

46 times ranked

16232 citing authors

#	Article	IF	CITATIONS
1	Mechanisms and Consequences of Noncanonical Inflammasome-Mediated Pyroptosis. Journal of Molecular Biology, 2022, 434, 167245.	4.2	21
2	Bone Marrow Transplantation Rescues Monocyte Recruitment Defect and Improves Cystic Fibrosis in Mice. Journal of Immunology, 2022, 208, 745-752.	0.8	7
3	A TLR4-independent critical role for CD14 in intracellular LPS sensing. Cell Reports, 2022, 39, 110755.	6.4	25
4	Intracellular immune sensing promotes inflammation via gasdermin D–driven release of a lectin alarmin. Nature Immunology, 2021, 22, 154-165.	14.5	73
5	Hierarchical cell-type-specific functions of caspase-11 in LPS shock and antibacterial host defense. Cell Reports, 2021, 35, 109012.	6.4	19
6	Shiga toxin suppresses noncanonical inflammasome responses to cytosolic LPS. Science Immunology, 2020, 5, .	11.9	17
7	AIM2 in health and disease: Inflammasome and beyond. Immunological Reviews, 2020, 297, 83-95.	6.0	107
8	Long Noncoding RNAs in Host–Pathogen Interactions. Trends in Immunology, 2019, 40, 492-510.	6.8	73
9	Innate immunity to intracellular LPS. Nature Immunology, 2019, 20, 527-533.	14.5	342
10	Long Non-coding RNA LincRNA-EPS Inhibits Host Defense Against Listeria monocytogenes Infection. Frontiers in Cellular and Infection Microbiology, 2019, 9, 481.	3.9	23
11	Inflammasome, Inflammation, and Tissue Homeostasis. Trends in Molecular Medicine, 2018, 24, 304-318.	6.7	137
12	(IR)Factor for NAIP Expression. Cell, 2018, 173, 817-819.	28.9	1
13	Emerging Insights into Noncanonical Inflammasome Recognition of Microbes. Journal of Molecular Biology, 2018, 430, 207-216.	4.2	49
14	Lipid Peroxidation Adds Fuel to Pyr(optosis). Cell Host and Microbe, 2018, 24, 8-9.	11.0	16
15	Gasdermin D Restrains Type I Interferon Response to Cytosolic DNA by Disrupting Ionic Homeostasis. Immunity, 2018, 49, 413-426.e5.	14.3	187
16	Transition from identity to bioactivityâ€guided proteomics for biomarker discovery with focus on the PF2D platform. Proteomics - Clinical Applications, 2016, 10, 8-24.	1.6	5
17	Bacterial Outer Membrane Vesicles Mediate Cytosolic Localization of LPS and Caspase-11 Activation. Cell, 2016, 165, 1106-1119.	28.9	534
18	Inflammasome Complexes: Emerging Mechanisms and Effector Functions. Cell, 2016, 165, 792-800.	28.9	761

#	Article	IF	Citations
19	Mechanisms of inflammasome activation: recent advances and novel insights. Trends in Cell Biology, 2015, 25, 308-315.	7.9	408
20	GBPs take AIM at Francisella. Nature Immunology, 2015, 16, 443-444.	14.5	6
21	Bacterial RNA:DNA hybrids are activators of the NLRP3 inflammasome. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7765-7770.	7.1	92
22	RNA and \hat{i}^2 -Hemolysin of Group B Streptococcus Induce Interleukin- $\hat{1}^2$ (IL- $\hat{1}^2$) by Activating NLRP3 Inflammasomes in Mouse Macrophages. Journal of Biological Chemistry, 2014, 289, 13701-13705.	3.4	62
23	Caspase-8 Modulates Dectin-1 and Complement Receptor 3–Driven IL-1β Production in Response to β-Glucans and the Fungal Pathogen, <i>Candida albicans</i> . Journal of Immunology, 2014, 193, 2519-2530.	0.8	114
24	Citrobacter rodentium: infection, inflammation and the microbiota. Nature Reviews Microbiology, 2014, 12, 612-623.	28.6	392
25	TRIL Is Involved in Cytokine Production in the Brain following <i>Escherichia coli</i> Infection. Journal of Immunology, 2014, 193, 1911-1919.	0.8	18
26	Dual Engagement of the NLRP3 and AIM2 Inflammasomes by Plasmodium-Derived Hemozoin and DNA during Malaria. Cell Reports, 2014, 6, 196-210.	6.4	152
27	Lipopolysaccharide sensing on the inside. Nature, 2013, 501, 173-175.	27.8	20
28	Cutting Edge: <i>Mycobacterium tuberculosis</i> but Not Nonvirulent Mycobacteria Inhibits IFN-β and AlM2 Inflammasome–Dependent IL-1β Production via Its ESX-1 Secretion System. Journal of Immunology, 2013, 191, 3514-3518.	0.8	102
29	Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome–dependent processing of IL-1β. Nature Immunology, 2013, 14, 52-60.	14.5	500
30	SnapShot: Inflammasomes. Cell, 2013, 153, 272-272.e1.	28.9	23
31	Activation of caspase-1 by the NLRP3 inflammasome regulates the NADPH oxidase NOX2 to control phagosome function. Nature Immunology, 2013, 14, 543-553.	14.5	177
32	Inflammation in Mice Ectopically Expressing Human Pyogenic Arthritis, Pyoderma Gangrenosum, and Acne (PAPA) Syndrome-associated PSTPIP1 A230T Mutant Proteins. Journal of Biological Chemistry, 2013, 288, 4594-4601.	3.4	33
33	Mouse, but not Human STING, Binds and Signals in Response to the Vascular Disrupting Agent 5,6-Dimethylxanthenone-4-Acetic Acid. Journal of Immunology, 2013, 190, 5216-5225.	0.8	334
34	TRIF Licenses Caspase-11-Dependent NLRP3 Inflammasome Activation by Gram-Negative Bacteria. Cell, 2012, 150, 606-619.	28.9	645
35	The NLRP12 Inflammasome Recognizes Yersinia pestis. Immunity, 2012, 37, 96-107.	14.3	293
36	Cutting Edge: FAS (CD95) Mediates Noncanonical IL- $1\hat{1}^2$ and IL-18 Maturation via Caspase-8 in an RIP3-Independent Manner. Journal of Immunology, 2012, 189, 5508-5512.	0.8	254

3

#	Article	IF	CITATIONS
37	Structures of the HIN Domain:DNA Complexes Reveal Ligand Binding and Activation Mechanisms of the AIM2 Inflammasome and IFI16 Receptor. Immunity, 2012, 36, 561-571.	14.3	456
38	Defective pro-IL- $1\hat{l}^2$ responses in macrophages from aged mice. Immunity and Ageing, 2012, 9, 27.	4.2	16
39	Regulation of inflammasome signaling. Nature Immunology, 2012, 13, 333-342.	14.5	802
40	Cytosolic surveillance and antiviral immunity. Current Opinion in Virology, 2011, 1, 455-462.	5 . 4	80
41	Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nature Immunology, 2011, 12, 222-230.	14.5	2,447
42	Aim2 Deficiency in Mice Suppresses the Expression of the Inhibitory Fcl^3 Receptor (Fcl^3 RIIB) through the Induction of the IFN-Inducible p202, a Lupus Susceptibility Protein. Journal of Immunology, 2011, 186, 6762-6770.	0.8	33
43	Inflammasomes and Anti-Viral Immunity. Journal of Clinical Immunology, 2010, 30, 632-637.	3.8	42
44	The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nature Immunology, 2010, 11, 395-402.	14.5	1,113
45	Catenin' on to nucleic acid sensing. Nature Immunology, 2010, 11, 466-468.	14.5	10
46	<i>Aim2</i> Deficiency Stimulates the Expression of IFN-Inducible <i>Ifi202</i> , a Lupus Susceptibility Murine Gene within the <i>Nba2</i> Autoimmune Susceptibility Locus. Journal of Immunology, 2010, 185, 7385-7393.	0.8	69