Paul A Mulvaney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6227265/publications.pdf Version: 2024-02-01

	1877	2239
45,093	105	207
citations	h-index	g-index
000	001	40105
336	336	48185
docs citations	times ranked	citing authors
	45,093 citations 336 docs citations	45,093 citations 105 h-index 336 docs citations 336 times ranked

#	Article	IF	CITATIONS
1	Evaluation of a lanthanide nanoparticleâ€based contrast agent for microcomputed tomography of porous channels in subchondral bone. Journal of Orthopaedic Research, 2023, 41, 447-458.	1.2	5
2	The fuzzy sphere morphology is responsible for the increase in light scattering during the shrinkage of thermoresponsive microgels. Soft Matter, 2022, 18, 807-825.	1.2	9
3	Ultrafast imaging of terahertz electric waveforms using quantum dots. Light: Science and Applications, 2022, 11, 5.	7.7	21
4	Correlation between Spectroscopic and Mechanical Properties of Gold Nanocrystals under Pressure. Journal of Physical Chemistry C, 2022, 126, 1982-1990.	1.5	4
5	A versatile strategy for loading silica particles with dyes and quantum dots. Colloids and Interface Science Communications, 2022, 47, 100594.	2.0	3
6	Temperature-Jump Spectroscopy of Gold–Poly(<i>N</i> -isopropylacrylamide) Core–Shell Microgels. Journal of Physical Chemistry C, 2022, 126, 4118-4131.	1.5	4
7	Tanks and Truth. ACS Nano, 2022, 16, 4975-4976.	7.3	0
8	A General Method for Direct Assembly of Single Nanocrystals. Advanced Optical Materials, 2022, 10, .	3.6	4
9	Nanoscience and Entrepreneurship. ACS Nano, 2022, 16, 6943-6944.	7.3	2
10	Direct Assembly of Vertically Oriented, Gold Nanorod Arrays. Advanced Functional Materials, 2021, 31, 2006753.	7.8	32
11	Detection of Halomethanes Using Cesium Lead Halide Perovskite Nanocrystals. ACS Nano, 2021, 15, 1454-1464.	7.3	32
12	Spectroelectrochemistry of Colloidal CdSe Quantum Dots. Chemistry of Materials, 2021, 33, 1353-1362.	3.2	18
13	Growth of Gold Nanorods: A SAXS Study. Journal of Physical Chemistry C, 2021, 125, 19947-19960.	1.5	13
14	On the Stiffness of Gold at the Nanoscale. ACS Nano, 2021, 15, 19128-19137.	7.3	12
15	Advances in the Surface Functionalization of Nanodiamonds for Biological Applications: A Review. ACS Applied Nano Materials, 2021, 4, 9985-10005.	2.4	28
16	Fabrication of Singleâ€Nanocrystal Arrays. Advanced Materials, 2020, 32, e1904551.	11.1	51
17	A Tunable Polymer–Metal Based Antiâ€Reflective Metasurface. Macromolecular Rapid Communications, 2020, 41, e1900415	2.0	9
18	Concealed Structural Colors Uncovered by Light Scattering. Advanced Optical Materials, 2020, 8, 2001307.	3.6	4

#	Article	IF	CITATIONS
19	Tutorials and Articles on Best Practices. ACS Nano, 2020, 14, 10751-10753.	7.3	1
20	Surface Lattice Resonances in Self-Assembled Gold Nanoparticle Arrays: Impact of Lattice Period, Structural Disorder, and Refractive Index on Resonance Quality. Langmuir, 2020, 36, 13601-13612.	1.6	32
21	Singleâ€Nanocrystal Arrays: Fabrication of Singleâ€Nanocrystal Arrays (Adv. Mater. 18/2020). Advanced Materials, 2020, 32, 2070143.	11.1	1
22	A luminescent solar concentrator ray tracing simulator with a graphical user interface: features and applications. Methods and Applications in Fluorescence, 2020, 8, 037001.	1.1	13
23	Multilevel Spherical Photonic Crystals with Controllable Structures and Structureâ€Enhanced Functionalities. Advanced Optical Materials, 2020, 8, 1902164.	3.6	16
24	Plasmonic Sensing of Refractive Index and Density in Methanol–Ethanol Mixtures at High Pressure. Journal of Physical Chemistry C, 2020, 124, 8978-8983.	1.5	12
25	A PTFE helical capillary microreactor for the high throughput synthesis of monodisperse silica particles. Chemical Engineering Journal, 2020, 401, 126063.	6.6	15
26	When Like Destabilizes Like: Inverted Solvent Effects in Apolar Nanoparticle Dispersions. ACS Nano, 2020, 14, 5278-5287.	7.3	26
27	Growing Contributions of Nano in 2020. ACS Nano, 2020, 14, 16163-16164.	7.3	1
28	Melbourne—Australia's Science City. ACS Nano, 2020, 14, 5153-5156.	7.3	0
29	An Optically Responsive Soft Etalon Based on Ultrathin Cellulose Hydrogels. Advanced Functional Materials, 2019, 29, 1904290.	7.8	30
30	Fabrication of a Three-Dimensional Plasmon Ruler Using an Atomic Force Microscope. Journal of Physical Chemistry C, 2019, 123, 19871-19878.	1.5	4
31	Transient overshoot and storage of charge carriers on ligands in quantum dot LEDs. Journal of Applied Physics, 2019, 126, .	1.1	20
32	High-Performance Large-Area Luminescence Solar Concentrator Incorporating a Donor–Emitter Fluorophore System. ACS Energy Letters, 2019, 4, 1839-1844.	8.8	42
33	Ligand memory effect in purple quantum dot LEDs. Applied Physics Letters, 2019, 115, 173505.	1.5	0
34	The Future of Layer-by-Layer Assembly: A Tribute to <i>ACS Nano</i> Associate Editor Helmuth Möhwald. ACS Nano, 2019, 13, 6151-6169.	7.3	211
35	Negative capacitance as a diagnostic tool for recombination in purple quantum dot LEDs. Journal of Applied Physics, 2019, 125, .	1.1	15
36	Silver Nanoparticle Gradient Arrays: Fluorescence Enhancement of Organic Dyes. Langmuir, 2019, 35, 8776-8783.	1.6	9

#	Article	IF	CITATIONS
37	Redefining the Experimental and Methods Sections. ACS Nano, 2019, 13, 4862-4864.	7.3	16
38	Aqueous Synthesis of Cu ₂ ZnSnSe ₄ Nanocrystals. Chemistry of Materials, 2019, 31, 2138-2150.	3.2	19
39	Monodisperse Gold Nanorods for High-Pressure Refractive Index Sensing. Journal of Physical Chemistry Letters, 2019, 10, 1587-1593.	2.1	32
40	Effects of Hydrostatic Pressure on the Surface Plasmon Resonance of Gold Nanocrystals. ACS Nano, 2019, 13, 498-504.	7.3	22
41	Millisecond CdS nanocrystal nucleation and growth studied by microfluidics with in situ spectroscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 562, 263-269.	2.3	12
42	Snapshot Hyperspectral Imaging (SHI) for Revealing Irreversible and Heterogeneous Plasmonic Processes. Journal of Physical Chemistry C, 2018, 122, 6865-6875.	1.5	25
43	Helmuth Möhwald (1946–2018). ACS Nano, 2018, 12, 3053-3055.	7.3	Ο
44	Coupled Plasmon Resonances and Gap Modes in Laterally Assembled Gold Nanorod Arrays. Zeitschrift Fur Physikalische Chemie, 2018, 232, 1607-1617.	1.4	4
45	Aqueous Synthesis of High-Quality Cu ₂ ZnSnS ₄ Nanocrystals and Their Thermal Annealing Characteristics. Langmuir, 2018, 34, 1655-1665.	1.6	15
46	Tuning Single Quantum Dot Emission with a Micromirror. Nano Letters, 2018, 18, 1010-1017.	4.5	8
47	Two Mechanisms Determine Quantum Dot Blinking. ACS Nano, 2018, 12, 3397-3405.	7.3	148
48	Impact of Surface Functionalization on the Quantum Coherence of Nitrogen-Vacancy Centers in Nanodiamonds. ACS Applied Materials & Interfaces, 2018, 10, 13143-13149.	4.0	36
49	The Degradation and Blinking of Single CsPbI ₃ Perovskite Quantum Dots. Journal of Physical Chemistry C, 2018, 122, 13407-13415.	1.5	111
50	Colloidal Stability of Apolar Nanoparticles: Role of Ligand Length. Langmuir, 2018, 34, 12982-12989.	1.6	50
51	Sedimentation of C ₆₀ and C ₇₀ : Testing the Limits of Stokes' Law. Journal of Physical Chemistry Letters, 2018, 9, 6345-6349.	2.1	7
52	Plasmonic polymer nanocomposites. Nature Reviews Materials, 2018, 3, 375-391.	23.3	187
53	Directed Chemical Assembly of Single and Clustered Nanoparticles with Silanized Templates. Langmuir, 2018, 34, 7355-7363.	1.6	23
54	Colloidal Stability of Apolar Nanoparticles: The Role of Particle Size and Ligand Shell Structure. ACS Nano, 2018, 12, 5969-5977.	7.3	110

#	Article	IF	CITATIONS
55	Direct Assembly of Large Area Nanoparticle Arrays. ACS Nano, 2018, 12, 7529-7537.	7.3	84
56	Towards Scalable Fabrication of Plasmonic Colour via Nanoimprint Lithography. , 2018, , .		0
57	Control of Symmetry Breaking Size and Aspect Ratio in Gold Nanorods: Underlying Role of Silver Nitrate. Journal of Physical Chemistry C, 2017, 121, 3549-3559.	1.5	81
58	Nanoscience and Nanotechnology Cross Borders. ACS Nano, 2017, 11, 1123-1126.	7.3	4
59	Circular luminescent solar concentrators. Solar Energy, 2017, 150, 30-37.	2.9	23
60	Diverse Applications of Nanomedicine. ACS Nano, 2017, 11, 2313-2381.	7.3	976
61	Our First and Next Decades at ACS Nano. ACS Nano, 2017, 11, 7553-7555.	7.3	0
62	Electron paramagnetic resonance microscopy using spins in diamond under ambient conditions. Nature Communications, 2017, 8, 458.	5.8	65
63	A Mechanism for Symmetry Breaking and Shape Control in Single-Crystal Gold Nanorods. Accounts of Chemical Research, 2017, 50, 2925-2935.	7.6	72
64	A Big Year Ahead for Nano in 2018. ACS Nano, 2017, 11, 11755-11757.	7.3	1
65	Potential-Scanning Localized Plasmon Sensing with Single and Coupled Gold Nanorods. Journal of Physical Chemistry Letters, 2017, 8, 3637-3641.	2.1	36
66	A virtual instrument to standardise the calibration of atomic force microscope cantilevers. Review of Scientific Instruments, 2016, 87, 093711.	0.6	114
67	Nanoscience and Nanotechnology Impacting Diverse Fields of Science, Engineering, and Medicine. ACS Nano, 2016, 10, 10615-10617.	7.3	22
68	Shell effects on hole-coupled electron transfer dynamics from CdSe/CdS quantum dots to methyl viologen. Nanoscale, 2016, 8, 10380-10387.	2.8	23
69	The Plasmonic Pixel: Large Area, Wide Gamut Color Reproduction Using Aluminum Nanostructures. Nano Letters, 2016, 16, 3817-3823.	4.5	154
70	Plasmonic Hot Electron Solar Cells: The Effect of Nanoparticle Size on Quantum Efficiency. Journal of Physical Chemistry Letters, 2016, 7, 4137-4141.	2.1	105
71	Single Gold Nanorod Charge Modulation in an Ion Gel Device. Nano Letters, 2016, 16, 6863-6869.	4.5	54
72	Enhancing Quantum Dot LED Efficiency by Tuning Electron Mobility in the ZnO Electron Transport Layer. Advanced Materials Interfaces, 2016, 3, 1600868.	1.9	83

#	Article	IF	CITATIONS
73	Electron Energy Loss Spectroscopy Investigation into Symmetry in Gold Trimer and Tetramer Plasmonic Nanoparticle Structures. ACS Nano, 2016, 10, 8552-8563.	7.3	41
74	Have Nanoscience and Nanotechnology Delivered?. ACS Nano, 2016, 10, 7225-7226.	7.3	16
75	Standardizing Nanomaterials. ACS Nano, 2016, 10, 9763-9764.	7.3	40
76	In Situ 3D Imaging of Catalysis Induced Strain in Gold Nanoparticles. Journal of Physical Chemistry Letters, 2016, 7, 3008-3013.	2.1	32
77	Laser Flash Photolysis of Au-PNIPAM Core–Shell Nanoparticles: Dynamics of the Shell Response. Langmuir, 2016, 32, 12497-12503.	1.6	32
78	Hot Carrier Extraction with Plasmonic Broadband Absorbers. ACS Nano, 2016, 10, 4704-4711.	7.3	174
79	Nanometers to centimeters: novel optical nano-antennas, with an eye to scaled production. , 2016, , .		Ο
80	Scanning Nanospin Ensemble Microscope for Nanoscale Magnetic and Thermal Imaging. Nano Letters, 2016, 16, 326-333.	4.5	79
81	From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties. Science Advances, 2015, 1, e1500988.	4.7	146
82	Surface plasmon spectroscopy study of electron exchange between single gold nanorods and metal oxide matrix during hydrogen gas sensing (Presentation Recording). , 2015, , .		0
83	Grand Plans for Nano. ACS Nano, 2015, 9, 11503-11505.	7.3	3
84	Transforming polarisation to wavelength via two-colour quantum dot plasmonic enhancement. Proceedings of SPIE, 2015, , .	0.8	0
85	Stability of Crystal Facets in Gold Nanorods. Nano Letters, 2015, 15, 1635-1641.	4.5	48
86	Repetitive Holeâ€Mask Colloidal Lithography for the Fabrication of Largeâ€Area Lowâ€Cost Plasmonic Multishape Singleâ€Layer Metasurfaces. Advanced Optical Materials, 2015, 3, 680-686.	3.6	19
87	Plasmonic gold–poly(N-isopropylacrylamide) core–shell colloids with homogeneous density profiles: a small angle scattering study. Physical Chemistry Chemical Physics, 2015, 17, 1354-1367.	1.3	45
88	Hydrogen Spillover between Single Gold Nanorods and Metal Oxide Supports: A Surface Plasmon Spectroscopy Study. ACS Nano, 2015, 9, 7846-7856.	7.3	65
89	Emission enhancement and polarization of semiconductor quantum dots with nanoimprinted plasmonic cavities: towards scalable fabrication of plasmon-exciton displays. Nanoscale, 2015, 7, 13816-13821.	2.8	19
90	Determination of the Optical Constants of Gold Nanoparticles from Thin-Film Spectra. Journal of Physical Chemistry C, 2015, 119, 9450-9459.	1.5	14

#	Article	IF	CITATIONS
91	Nanoscience <i>vs</i> Nanotechnology—Defining the Field. ACS Nano, 2015, 9, 2215-2217.	7.3	44
92	Inertial imaging with nanomechanical systems. Nature Nanotechnology, 2015, 10, 339-344.	15.6	141
93	Effect of cantilever geometry on the optical lever sensitivities and thermal noise method of the atomic force microscope. Review of Scientific Instruments, 2014, 85, 113702.	0.6	36
94	Spectroelectrochemistry of Silver Deposition on Single Gold Nanocrystals. Journal of Physical Chemistry Letters, 2014, 5, 4331-4335.	2.1	56
95	A Year for Nanoscience. ACS Nano, 2014, 8, 11901-11903.	7.3	6
96	Tailoring the Exciton Fine Structure of Cadmium Selenide Nanocrystals with Shape Anisotropy and Magnetic Field. ACS Nano, 2014, 8, 11651-11656.	7.3	23
97	Concentrated aqueous synthesis of nanoparticles using comb-graft copolymer stabilisers: the effect of stabiliser architecture. RSC Advances, 2014, 4, 46876-46886.	1.7	6
98	Fano resonances in three-dimensional dual cut-wire pairs. Nanoscale, 2014, 6, 5372-5377.	2.8	16
99	Phase Transfer of Noble Metal Nanoparticles to Organic Solvents. Langmuir, 2014, 30, 1932-1938.	1.6	54
100	Dynamic Similarity of Oscillatory Flows Induced by Nanomechanical Resonators. Physical Review Letters, 2014, 112, 015501.	2.9	14
101	Ostwald ripening of comb polymer stabilised Ag salt nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 459, 58-64.	2.3	19
102	Characterization of Size, Anisotropy, and Density Heterogeneity of Nanoparticles by Sedimentation Velocity. Analytical Chemistry, 2014, 86, 7688-7695.	3.2	74
103	Energy Transfer between Quantum Dots and Conjugated Dye Molecules. Journal of Physical Chemistry C, 2014, 118, 18079-18086.	1.5	61
104	The optical phonon spectrum of CdSe colloidal quantum dots. Physical Chemistry Chemical Physics, 2014, 16, 16957.	1.3	12
105	Synthesis of Highly Crystalline CdSe@ZnO Nanocrystals via Monolayer-by-Monolayer Epitaxial Shell Deposition. Chemistry of Materials, 2014, 26, 4274-4279.	3.2	24
106	Solution-processing of ultra-thin CdTe/ZnO nanocrystal solar cells. Thin Solid Films, 2014, 558, 365-373.	0.8	18
107	Mapping Bright and Dark Modes in Gold Nanoparticle Chains using Electron Energy Loss Spectroscopy Nano Letters, 2014, 14, 3799-3808.	4.5	100
108	Concentrated synthesis of metal nanoparticles in water. RSC Advances, 2014, 4, 31914-31925.	1.7	16

#	Article	IF	CITATIONS
109	Electronic Structure Engineering in ZnSe/CdS Type-II Nanoparticles by Interface Alloying. Journal of Physical Chemistry C, 2014, 118, 13276-13284.	1.5	54
110	Filling schemes at submicron scale: Development of submicron sized plasmonic colour filters. Scientific Reports, 2014, 4, 6435.	1.6	55
111	Transparent metal electrodes from ordered nanosphere arrays. Journal of Applied Physics, 2013, 114, .	1.1	38
112	Interaction of gold nanoparticles with thermoresponsive microgels: influence of the cross-linker density on optical properties. Physical Chemistry Chemical Physics, 2013, 15, 15623.	1.3	52
113	Be Critical but Fair. ACS Nano, 2013, 7, 8313-8316.	7.3	5
114	Exciting Times for Nano. ACS Nano, 2013, 7, 10437-10439.	7.3	1
115	Synthesis of Highly Luminescent and Photo-Stable, Graded Shell CdSe/Cd _{<i>x</i>} Zn _{1–<i>x</i>} S Nanoparticles by In Situ Alloying. Chemistry of Materials, 2013, 25, 4731-4738.	3.2	167
116	Surface plasmon coupling in end-to-end linked gold nanorod dimers and trimers. Physical Chemistry Chemical Physics, 2013, 15, 4258.	1.3	70
117	Distance and Wavelength Dependent Quenching of Molecular Fluorescence by Au@SiO ₂ Core–Shell Nanoparticles. ACS Nano, 2013, 7, 6636-6648.	7.3	211
118	Aligned Linear Arrays of Crystalline Nanoparticles. Journal of Physical Chemistry Letters, 2013, 4, 1994-2001.	2.1	16
119	DNA-directed self-assembly and optical properties of discrete 1D, 2D and 3D plasmonic structures. Nano Today, 2013, 8, 138-167.	6.2	113
120	Detection of atomic spin labels in a lipid bilayer using a single-spin nanodiamond probe. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10894-10898.	3.3	113
121	The surface plasmon modes of self-assembled gold nanocrystals. Nature Communications, 2012, 3, 1275.	5.8	157
122	Defect-Mediated Energy Transfer between ZnO Nanocrystals and a Conjugated Dye. Journal of Physical Chemistry C, 2012, 116, 3305-3310.	1.5	44
123	The State of Nanoparticle-Based Nanoscience and Biotechnology: Progress, Promises, and Challenges. ACS Nano, 2012, 6, 8468-8483.	7.3	211
124	Conjugation of Transferrin to Azideâ€Modified CdSe/ZnS Core–Shell Quantum Dots using Cyclooctyne Click Chemistry. Angewandte Chemie - International Edition, 2012, 51, 10523-10527.	7.2	87
125	Spring constant calibration of atomic force microscope cantilevers of arbitrary shape. Review of Scientific Instruments, 2012, 83, 103705.	0.6	228
126	Magneto-optical properties of trions in non-blinking charged nanocrystals reveal an acoustic phonon bottleneck. Nature Communications, 2012, 3, 1287.	5.8	53

#	Article	IF	CITATIONS
127	Cooperative effect of Au and Pt inside TiO2 matrix for optical hydrogen detection at room temperature using surface plasmon spectroscopy. Nanoscale, 2012, 4, 5972.	2.8	49
128	Single-Photon Emission and Quantum Characterization of Zinc Oxide Defects. Nano Letters, 2012, 12, 949-954.	4.5	118
129	Spontaneous Spectral Diffusion in CdSe Quantum Dots. Journal of Physical Chemistry Letters, 2012, 3, 1716-1720.	2.1	54
130	Rapid Detection of Hendra Virus Using Magnetic Particles and Quantum Dots. Advanced Healthcare Materials, 2012, 1, 631-634.	3.9	18
131	A Solidâ€6tate Plasmonic Solar Cell via Metal Nanoparticle Selfâ€Assembly. Advanced Materials, 2012, 24, 4750-4755.	11.1	212
132	Layer-by-Layer Assembly of Sintered CdSe _{<i>x</i>} Te _{1–<i>x</i>} Nanocrystal Solar Cells. ACS Nano, 2012, 6, 5995-6004.	7.3	130
133	Dielectrophoresis–Raman spectroscopy system for analysing suspended nanoparticles. Lab on A Chip, 2011, 11, 921.	3.1	51
134	2D assembly of gold–PNIPAM core–shell nanocrystals. Physical Chemistry Chemical Physics, 2011, 13, 5576.	1.3	50
135	Surface Plasmon Spectroscopy of Goldâ^'Poly- <i>N</i> -isopropylacrylamide Coreâ^'Shell Particles. Langmuir, 2011, 27, 820-827.	1.6	87
136	Coupling modes of gold trimer superstructures. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 3472-3482.	1.6	24
137	Three-Dimensional Morphology and Crystallography of Gold Nanorods. Nano Letters, 2011, 11, 273-278.	4.5	123
138	Effect of Defects on the Behavior of ZnO Nanoparticle FETs. Journal of Physical Chemistry C, 2011, 115, 8312-8315.	1.5	28
139	Surface Plasmon Resonances in Strongly Coupled Gold Nanosphere Chains from Monomer to Hexamer. Nano Letters, 2011, 11, 4180-4187.	4.5	204
140	Solution-Processed Sintered Nanocrystal Solar Cells via Layer-by-Layer Assembly. Nano Letters, 2011, 11, 2856-2864.	4.5	169
141	Cells as Factories for Humanized Encapsulation. Nano Letters, 2011, 11, 2152-2156.	4.5	64
142	Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nature Nanotechnology, 2011, 6, 358-363.	15.6	552
143	Comparative Study of the Magnetic Behavior of Spherical and Cubic Superparamagnetic Iron Oxide Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 327-334.	1.5	119
144	Polymer oated Nanoparticles: A Universal Tool for Biolabelling Experiments. Small, 2011, 7, 3113-3127.	5.2	261

#	Article	IF	CITATIONS
145	Selfâ€Assembly of Tunable Nanocrystal Superlattices Using Polyâ€(NIPAM) Spacers. Advanced Functional Materials, 2011, 21, 4668-4676.	7.8	73
146	Synthesis of quantum dot doped chalcogenide glasses via sol-gel processing. Journal of Applied Physics, 2011, 109, .	1.1	29
147	Using Hydrogels to Accommodate Hydrophobic Nanoparticles in Aqueous Media via Solvent Exchange. Advanced Materials, 2010, 22, 3247-3250.	11.1	35
148	Monitoring ion-channel function in real time through quantum decoherence. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18777-18782.	3.3	112
149	Lubrication forces in air and accommodation coefficient measured by a thermal damping method using an atomic force microscope. Physical Review E, 2010, 81, 056305.	0.8	22
150	Fabrication of ZnO Thin Films from Nanocrystal Inks. Journal of Physical Chemistry C, 2010, 114, 19815-19821.	1.5	26
151	Anomalous Power Laws of Spectral Diffusion in Quantum Dots: A Connection to Luminescence Intermittency. Physical Review Letters, 2010, 105, 167402.	2.9	34
152	All-inorganic quantum-dot light-emitting devices formed via low-cost, wet-chemical processing. Journal of Materials Chemistry, 2010, 20, 167-172.	6.7	124
153	Charge hopping revealed by jitter correlations in the photoluminescence spectra of single CdSe nanocrystals. Physical Review B, 2010, 81, .	1.1	24
154	Surface Plasmon Mediated Strong Excitonâ^'Photon Coupling in Semiconductor Nanocrystals. Nano Letters, 2010, 10, 274-278.	4.5	264
155	Influence of Particleâ^'Substrate Interaction on Localized Plasmon Resonances. Nano Letters, 2010, 10, 2080-2086.	4.5	148
156	Colloidal Gold-Catalyzed Reduction of Ferrocyanate (III) by Borohydride Ions: A Model System for Redox Catalysis. Langmuir, 2010, 26, 1271-1277.	1.6	99
157	Electrodynamic ratchet motor. Physical Review E, 2009, 79, 030105.	0.8	1
158	Hydrogenâ€Bondâ€ S elective Phase Transfer of Nanoparticles across Liquid/Gel Interfaces. Angewandte Chemie - International Edition, 2009, 48, 4953-4956.	7.2	39
159	Plasmon Coupling of Gold Nanorods at Short Distances and in Different Geometries. Nano Letters, 2009, 9, 1651-1658.	4.5	718
160	Excitonâ^'Trion Transitions in Single CdSe–CdS Core–Shell Nanocrystals. ACS Nano, 2009, 3, 2281-2287.	7.3	131
161	Gold Nanoparticles: Past, Present, and Future. Langmuir, 2009, 25, 13840-13851.	1.6	1,000
162	Re-examination of the Size-Dependent Absorption Properties of CdSe Quantum Dots. Journal of Physical Chemistry C, 2009, 113, 19468-19474.	1.5	523

#	Article	IF	CITATIONS
163	Evolution of Colloidal Nanocrystals: Theory and Modeling of their Nucleation and Growth. Journal of Physical Chemistry C, 2009, 113, 16342-16355.	1.5	92
164	High-Resolution Line Width Measurement of Single CdSe Nanocrystals at Long Time Scales. Journal of Physical Chemistry C, 2009, 113, 5345-5348.	1.5	10
165	Self-assembled gold nanoparticle monolayers in sol–gel matrices: synthesis and gas sensing applications. Journal of Materials Chemistry, 2009, 19, 2051.	6.7	44
166	The Preparation of Colloidally Stable, Water-Soluble, Biocompatible, Semiconductor Nanocrystals with a Small Hydrodynamic Diameter. ACS Nano, 2009, 3, 1121-1128.	7.3	171
167	Combinatorial Discovery of Novel Amphiphilic Polymers for the Phase Transfer of Magnetic Nanoparticles. Journal of Physical Chemistry C, 2009, 113, 16615-16624.	1.5	25
168	Mapping the Optical Properties of CdSe/CdS Heterostructure Nanocrystals: The Effects of Core Size and Shell Thickness. Journal of the American Chemical Society, 2009, 131, 14299-14309.	6.6	159
169	Spectroscopy, Imaging, and Modeling of Individual Gold Decahedra. Journal of Physical Chemistry C, 2009, 113, 18623-18631.	1.5	71
170	Electrochemical Charging of Single Gold Nanorods. Journal of the American Chemical Society, 2009, 131, 14664-14666.	6.6	244
171	The effect of surface roughness on the plasmonic response of individual sub-micron gold spheres. Physical Chemistry Chemical Physics, 2009, 11, 5909.	1.3	124
172	Tunable infrared absorption by metal nanoparticles: The case for gold rods and shells. Gold Bulletin, 2008, 41, 5-14.	3.2	56
173	Sol-Gel Based Vertical Optical Microcavities with Quantum Dot Defect Layers. Advanced Functional Materials, 2008, 18, 3772-3779.	7.8	45
174	Gold Nanoparticle-Doped TiO ₂ Semiconductor Thin Films: Gas Sensing Properties. Advanced Functional Materials, 2008, 18, 3843-3849.	7.8	199
175	Frontiers in Nanomaterials. Advanced Functional Materials, 2008, 18, 3743-3744.	7.8	1
176	Highly Efficient Amplified Stimulated Emission from CdSeâ€CdSâ€ZnS Quantum Dot Doped Waveguides with Twoâ€Photon Infrared Optical Pumping. Advanced Materials, 2008, 20, 69-73.	11.1	90
177	Complete Quenching of CdSe Nanocrystal Photoluminescence by Single Dye Molecules. Advanced Materials, 2008, 20, 4274-4280.	11.1	67
178	Modelling the optical response of gold nanoparticles. Chemical Society Reviews, 2008, 37, 1792.	18.7	1,072
179	Shape control in gold nanoparticle synthesis. Chemical Society Reviews, 2008, 37, 1783.	18.7	1,749
180	Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance. Journal of Materials Chemistry, 2008, 18, 1949.	6.7	441

11

#	Article	IF	CITATIONS
181	Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy. Nature Nanotechnology, 2008, 3, 598-602.	15.6	424
182	Density Functional Study of Surface Passivation of Nonpolar Wurtzite CdSe Surfaces. Journal of Physical Chemistry C, 2008, 112, 20413-20417.	1.5	20
183	Tunable light emission using quantum dot-coated upconverters. Chemical Communications, 2008, , 174-176.	2.2	12
184	The Effects of Electron and Hole Injection on the Photoluminescence of CdSe/CdS/ZnS Nanocrystal Monolayers. ACS Nano, 2008, 2, 669-676.	7.3	81
185	Experimental Determination of Quantum Dot Size Distributions, Ligand Packing Densities, and Bioconjugation Using Analytical Ultracentrifugation. Nano Letters, 2008, 8, 2883-2890.	4.5	95
186	Acoustic Phonon Contributions to the Emission Spectrum of Single CdSe Nanocrystals. Journal of Physical Chemistry C, 2008, 112, 1878-1884.	1.5	71
187	Influence of the Medium Refractive Index on the Optical Properties of Single Gold Triangular Prisms on a Substrate. Journal of Physical Chemistry C, 2008, 112, 3-7.	1.5	142
188	Redshift of surface plasmon modes of small gold rods due to their atomic roughness and end-cap geometry. Physical Review B, 2008, 77, .	1.1	47
189	Patterning and encryption using gold nanoparticles. International Journal of Nanotechnology, 2007, 4, 215.	0.1	12
190	From Cd-Rich to Se-Rich â^' the Manipulation of CdSe Nanocrystal Surface Stoichiometry. Journal of the American Chemical Society, 2007, 129, 2841-2848.	6.6	345
191	Charge-Induced Rayleigh Instabilities In Small Gold Rods. Nano Letters, 2007, 7, 520-524.	4.5	88
192	An Electrochemical Model for Gold Colloid Formation via Citrate Reduction. Zeitschrift Fur Physikalische Chemie, 2007, 221, 415-426.	1.4	52
193	Review of the Synthetic Chemistry Involved in the Production of Core/Shell Semiconductor Nanocrystals. Australian Journal of Chemistry, 2007, 60, 457.	0.5	114
194	ICONN 2006 Research Highlights. Australian Journal of Chemistry, 2007, 60, 445.	0.5	1
195	Spectroscopy and High-Resolution Microscopy of Single Nanocrystals by a Focused Ion Beam Registration Method. Angewandte Chemie - International Edition, 2007, 46, 3517-3520.	7.2	51
196	Gold-Nanoparticle-Doped TiO2 Semiconductor Thin Films: Optical Characterization. Advanced Functional Materials, 2007, 17, 347-354.	7.8	143
197	Luminescence and Amplified Stimulated Emission in CdSe-ZnS-Nanocrystal-Doped TiO2 and ZrO2 Waveguides. Advanced Functional Materials, 2007, 17, 1654-1662.	7.8	77
198	Detection of Unlabeled Oligonucleotide Targets Using Whispering Gallery Modes in Single, Fluorescent Microspheres. Small, 2007, 3, 1408-1414.	5.2	49

#	Article	IF	CITATIONS
199	The Effects of Chemisorption on the Luminescence of CdSe Quantum Dots. Langmuir, 2006, 22, 3007-3013.	1.6	467
200	On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating. Physical Chemistry Chemical Physics, 2006, 8, 814-821.	1.3	292
201	Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study. Physical Chemistry Chemical Physics, 2006, 8, 3540.	1.3	293
202	Gold nanorod extinction spectra. Journal of Applied Physics, 2006, 99, 123504.	1.1	262
203	Blinking and Surface Chemistry of Single CdSe Nanocrystals. Small, 2006, 2, 204-208.	5.2	108
204	Tunable 3D Arrays of Quantum Dots: Synthesis and Luminescence Properties. Small, 2006, 2, 199-203.	5.2	20
205	Superhydrophobic Effects of Self-Assembled Monolayers on Micropatterned Surfaces:Â 3-D Arrays Mimicking the Lotus Leaf. Langmuir, 2006, 22, 11072-11076.	1.6	46
206	Optical properties of single semiconductor nanocrystals. Physical Chemistry Chemical Physics, 2006, 8, 4989-5011.	1.3	127
207	Drastic Surface Plasmon Mode Shifts in Gold Nanorods Due to Electron Charging. Plasmonics, 2006, 1, 61-66.	1.8	150
208	Spectral diffusion of single semiconductor nanocrystals: The influence of the dielectric environment. Applied Physics Letters, 2006, 88, 154106.	1.5	49
209	Density Functional ab-initio study of passivated nonpolar wurtzite CdSe surfaces. , 2006, , .		0
210	The Nanostructure and Development of Diatom Biosilica. , 2005, , 177-194.		3
211	Gold nanorods: Synthesis, characterization and applications. Coordination Chemistry Reviews, 2005, 249, 1870-1901.	9.5	1,867
212	Density functional study of non-polar surfaces of wurtzite CdSe. Chemical Physics Letters, 2005, 414, 322-325.	1.2	20
213	Spatially-Directed Oxidation of Gold Nanoparticles by Au(III)â^'CTAB Complexes. Journal of Physical Chemistry B, 2005, 109, 14257-14261.	1.2	321
214	VARIATIONS IN THE SUBSTITUTED 3-LINKED MANNANS CLOSELY ASSOCIATED WITH THE SILICIFIED WALLS OF DIATOMS1. Journal of Phycology, 2005, 41, 1154-1161.	1.0	50
215	Optical Control and Patterning of Gold-Nanorod-Poly(vinyl alcohol) Nanocomposite Films. Advanced Functional Materials, 2005, 15, 1065-1071.	7.8	254
216	A Simple Route to Tunable Two-Dimensional Arrays of Quantum Dots. Advanced Materials, 2005, 17, 415-418.	11.1	27

#	Article	IF	CITATIONS
217	Tunable Whispering Gallery Mode Emission from Quantum-Dot-Doped Microspheres. Small, 2005, 1, 238-241.	5.2	91
218	Quantum dots with silica shells. , 2005, 5705, 77.		2
219	Nucleation and Growth of CdSe Nanocrystals in a Binary Ligand System. Langmuir, 2005, 21, 10226-10233.	1.6	203
220	General scaling law for stiffness measurement of small bodies with applications to the atomic force microscope. Journal of Applied Physics, 2005, 97, 124903.	1.1	68
221	Phosphine-Free Synthesis of CdSe Nanocrystals. Journal of Physical Chemistry B, 2005, 109, 20665-20668.	1.2	225
222	Scattering Curves of Ordered Mesoscopic Materials. Journal of Physical Chemistry B, 2005, 109, 1347-1360.	1.2	246
223	Coherent Excitation of Vibrational Modes of Gold Nanorods. , 2005, , 125-138.		0
224	Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations. Applied Physics Letters, 2004, 84, 4938-4940.	1.5	114
225	Two-photon-induced photoenhancement of densely packed CdSeâ^•ZnSeâ^•ZnS nanocrystal solids and its application to multilayer optical data storage. Applied Physics Letters, 2004, 85, 5514-5516.	1.5	40
226	Three-photon excited band edge and trap emission of CdS semiconductor nanocrystals. Applied Physics Letters, 2004, 84, 4472-4474.	1.5	68
227	Single Quantum Dots in Spherical Silica Particles. Angewandte Chemie - International Edition, 2004, 43, 5393-5396.	7.2	249
228	Electric-Field-Directed Growth of Gold Nanorods in Aqueous Surfactant Solutions. Advanced Functional Materials, 2004, 14, 571-579.	7.8	540
229	Normal and torsional spring constants of atomic force microscope cantilevers. Review of Scientific Instruments, 2004, 75, 1988-1996.	0.6	455
230	Incorporation of a highly luminescent semiconductor quantum dot in ZrO2–SiO2hybrid sol–gel glass film. Journal of Materials Chemistry, 2004, 14, 1112-1116.	6.7	46
231	Determination of the Elastic Constants of Gold Nanorods Produced by Seed Mediated Growth. Nano Letters, 2004, 4, 2493-2497.	4.5	72
232	Nucleation and Growth Kinetics of CdSe Nanocrystals in Octadecene. Nano Letters, 2004, 4, 2303-2307.	4.5	356
233	Optical properties of metal nanoparticle coated silica spheres: a simple effective medium approach. Physical Chemistry Chemical Physics, 2004, 6, 5056-5060.	1.3	114
234	Synthesis of Au/TiO ₂ Core-shell Structure Nanoparticles and the Crystallinity of TiO ₂ Shell. Materials Transactions, 2004, 45, 964-967.	0.4	14

#	Article	IF	CITATIONS
235	Synthesis and characterization of Au/TiO2 core-shell structure nanoparticles. Korean Journal of Chemical Engineering, 2003, 20, 1176-1182.	1.2	24
236	PROBING THE SURFACE OF LIVING DIATOMS WITH ATOMIC FORCE MICROSCOPY: THE NANOSTRUCTURE AND NANOMECHANICAL PROPERTIES OF THE MUCILAGE LAYER1. Journal of Phycology, 2003, 39, 722-734.	1.0	81
237	THE STRUCTURE AND NANOMECHANICAL PROPERTIES OF THE ADHESIVE MUCILAGE THAT MEDIATES DIATOM-SUBSTRATUM ADHESION AND MOTILITY1. Journal of Phycology, 2003, 39, 1181-1193.	1.0	110
238	Vibrational Response of Nanorods to Ultrafast Laser Induced Heating:Â Theoretical and Experimental Analysis. Journal of the American Chemical Society, 2003, 125, 14925-14933.	6.6	238
239	Two-photon fluorescence scanning near-field microscopy based on a focused evanescent field under total internal reflection. Optics Letters, 2003, 28, 1930.	1.7	26
240	The Assembly of Coated Nanocrystalsâ€. Journal of Physical Chemistry B, 2003, 107, 7312-7326.	1.2	269
241	Size Effects in ZnO: The Cluster to Quantum Dot Transition. Australian Journal of Chemistry, 2003, 56, 1051.	0.5	193
242	Rational Material Design Using Au Core-Shell Nanocrystals. Topics in Current Chemistry, 2003, , 225-246.	4.0	16
243	<title>Coherent excitation of vibrational modes in nanoparticles and nanorods: what do we really measure?</title> ., 2003, , .		0
244	Mechanical Properties of Small Metal Spheres and Rods. , 2003, , 77-86.		0
245	Continuous Preparation of CdSe Nanocrystals by a Microreactor. Chemistry Letters, 2002, 31, 1072-1073.	0.7	46
246	Excitation of mechanical modes in gold nanorods. , 2002, , .		1
247	Coherent Excitation of Vibrational Modes in Gold Nanorods. Journal of Physical Chemistry B, 2002, 106, 743-747.	1.2	69
248	Preparation of CdSe nanocrystals in a micro-flow-reactor. Chemical Communications, 2002, , 2844-2845.	2.2	180
249	Characterization of the Adhesive Mucilages Secreted by Live Diatom Cells using Atomic Force Microscopy. Protist, 2002, 153, 25-38.	0.6	105
250	Laser Writing in Polarized Silver Nanorod Films. Advanced Materials, 2002, 14, 1000-1004.	11.1	152
251	Gold nanoparticle thin films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 202, 119-126.	2.3	168
252	Fermi Level Equilibration in Quantum Dotâ^'Metal Nanojunctions. Journal of Physical Chemistry B, 2001, 105, 8810-8815.	1.2	517

#	Article	IF	CITATIONS
253	Optical Properties of Thin Films of Au@SiO2Particles. Journal of Physical Chemistry B, 2001, 105, 3441-3452.	1.2	573
254	Interaction Forces and Zeta Potentials of Cationic Polyelectrolyte Coated Silica Surfaces in Water and in Ethanol:Â Effects of Chain Length and Concentration of Perfluorinated Anionic Surfactants on Their Binding to the Surface. Langmuir, 2001, 17, 6220-6227.	1.6	37
255	Characterisation of adhesional properties of lactose carriers using atomic force microscopy. Journal of Pharmaceutical and Biomedical Analysis, 2001, 25, 559-567.	1.4	88
256	NANOSTRUCTURE OF THE DIATOM FRUSTULE AS REVEALED BY ATOMIC FORCE AND SCANNING ELECTRON MICROSCOPY. Journal of Phycology, 2001, 37, 543-554.	1.0	209
257	Materials Research in Australia and New Zealand. Advanced Materials, 2001, 13, 861-863.	11.1	0
258	Synthesis of Tunable, Highly Luminescent QD-Glasses Through Sol-Gel Processing. Advanced Materials, 2001, 13, 985-988.	11.1	107
259	Electro-optical shifts in silver nanoparticle films. Chemical Physics Letters, 2001, 349, 358-362.	1.2	150
260	CORE-SHELL NANOPARTICLES AND ASSEMBLIES THEREOF. , 2001, , 189-237.		29
261	Not All That's Gold Does Glitter. MRS Bulletin, 2001, 26, 1009-1014.	1.7	128
262	Au@SnO2 Core-Shell Nanocapacitors. Advanced Materials, 2000, 12, 1519-1522.	11.1	205
263	Synthesis and electronic properties of semiconductor nanoparticles/quantum dots. Current Opinion in Colloid and Interface Science, 2000, 5, 168-172.	3.4	142
264	Silica-coated metals and semiconductors. Stabilization and nanostructuring. Pure and Applied Chemistry, 2000, 72, 257-267.	0.9	71
265	Solvent Refractive Index and Core Charge Influences on the Surface Plasmon Absorbance of Alkanethiolate Monolayer-Protected Gold Clusters. Journal of Physical Chemistry B, 2000, 104, 564-570.	1.2	508
266	Experimental validation of theoretical models for the frequency response of atomic force microscope cantilever beams immersed in fluids. Journal of Applied Physics, 2000, 87, 3978-3988.	1.1	302
267	The topography of soft, adhesive diatom â€~trails' as observed by Atomic Force Microscopy. Biofouling, 2000, 16, 133-139.	0.8	36
268	Silica encapsulation of quantum dots and metal clusters. Journal of Materials Chemistry, 2000, 10, 1259-1270.	6.7	409
269	Calibration of rectangular atomic force microscope cantilevers. Review of Scientific Instruments, 1999, 70, 3967-3969.	0.6	1,833
270	Redox Catalysis Using Ag@SiO2Colloids. Journal of Physical Chemistry B, 1999, 103, 6770-6773.	1.2	161

#	Article	IF	CITATIONS
271	Surface Forces and Deformation at the Oilâ~'Water Interface Probed Using AFM Force Measurement. Langmuir, 1999, 15, 7282-7289.	1.6	109
272	The Effect of pH on Multibubble Sonoluminescence from Aqueous Solutions Containing Simple Organic Weak Acids and Bases. Journal of the American Chemical Society, 1999, 121, 7355-7359.	6.6	85
273	Au@SiO2 colloids: effect of temperature on the surface plasmon absorption. New Journal of Chemistry, 1998, 22, 1285-1288.	1.4	61
274	Double-Layer Interactions between Self-Assembled Monolayers of ω-Mercaptoundecanoic Acid on Gold Surfaces. Langmuir, 1998, 14, 3303-3311.	1.6	119
275	Controlled Method for Silica Coating of Silver Colloids. Influence of Coating on the Rate of Chemical Reactions. Langmuir, 1998, 14, 3740-3748.	1.6	415
276	Ultrasound-induced formation and dissolution of colloidal CdS. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 1791-1795.	1.7	66
277	Spectroscopy of metal colloids—Some comparisons with semiconductor colloids. Studies in Surface Science and Catalysis, 1997, , 99-123.	1.5	14
278	Spectroelectrochemistry of Colloidal Silver. Langmuir, 1997, 13, 1773-1782.	1.6	251
279	Sonoluminescence from Aqueous Alcohol and Surfactant Solutions. Journal of Physical Chemistry B, 1997, 101, 10845-10850.	1.2	183
280	Chemistry of nanosized silicaâ€coated metal particlesâ€EMâ€study. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1997, 101, 1617-1620.	0.9	35
281	Direct observation of chemical reactions in silica-coated gold and silver nanoparticles. Advanced Materials, 1997, 9, 570-575.	11.1	291
282	Homogeneous silica coating of vitreophobic colloids. Chemical Communications, 1996, , 731-732.	2.2	146
283	Imaging nanosized gold colloids by atomic force microscopy: a direct comparison with transmission electron microscopy. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 3137.	1.7	40
284	Surfactant and Polymer Adsorption: Atomic Force Microscopy Measurements. ACS Symposium Series, 1996, , 255-266.	0.5	3
285	Surface Plasmon Spectroscopy of Nanosized Metal Particles. Langmuir, 1996, 12, 788-800.	1.6	3,293
286	Synthesis of Nanosized Goldâ^'Silica Coreâ^'Shell Particles. Langmuir, 1996, 12, 4329-4335.	1.6	1,766
287	Direct Measurement of Repulsive van der Waals Interactions Using an Atomic Force Microscope. Journal of Colloid and Interface Science, 1996, 180, 460-465.	5.0	158
288	Sonochemical reduction processes in aqueous colloidal systems. Ultrasonics, 1996, 34, 547-550.	2.1	42

#	Article	IF	CITATIONS
289	Method for the calibration of atomic force microscope cantilevers. Review of Scientific Instruments, 1995, 66, 3789-3798.	0.6	879
290	Sonochemical dissolution of MnO2 colloids. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 2843.	1.7	82
291	Effect of the Solution Refractive Index on the Color of Gold Colloids. Langmuir, 1994, 10, 3427-3430.	1.6	677
292	Measurement of the forces between gold surfaces in water by atomic force microscopy. Journal of Chemical Physics, 1994, 100, 8501-8505.	1.2	145
293	Composite Pd-Ag Particles in Aqueous Solution. The Journal of Physical Chemistry, 1994, 98, 6212-6215.	2.9	96
294	Study of Anion Adsorption at the Gold-Aqueous Solution Interface by Atomic Force Microscopy. Journal of the American Chemical Society, 1994, 116, 9150-9157.	6.6	211
295	Formation of Q-state CdS colloids using ultrasound. Journal of the Chemical Society Chemical Communications, 1994, , 823.	2.0	17
296	Surface chemistry of colloidal gold: Deposition and reoxidation of Pb, Cd, and Tl. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1994, 98, 180-189.	0.9	34
297	Preparation of ordered colloid monolayers by electrophoretic deposition. Langmuir, 1993, 9, 3408-3413.	1.6	616
298	Nucleation and stabilization of quantized AgI clusters in aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1993, 81, 231-238.	2.3	16
299	Electrochemistry of multilayer colloids: preparation and absorption spectrum of gold-coated silver particles. The Journal of Physical Chemistry, 1993, 97, 7061-7064.	2.9	276
300	Surface chemistry of colloidal silver: surface plasmon damping by chemisorbed iodide, hydrosulfide (SH-), and phenylthiolate. The Journal of Physical Chemistry, 1993, 97, 679-682.	2.9	236
301	Redox Reactions of Thallium Clusters in Aqueous Solution. Israel Journal of Chemistry, 1993, 33, 89-94.	1.0	3
302	Surface chemistry of colloidal silver: reduction of adsorbed cadmium(2+) ions and accompanying optical effects. The Journal of Physical Chemistry, 1992, 96, 2411-2414.	2.9	68
303	Fermi level equilibration between colloidal lead and silver particles in aqueous solution. The Journal of Physical Chemistry, 1992, 96, 8700-8702.	2.9	58
304	Surface chemistry of colloidal gold: deposition of lead and accompanying optical effects. The Journal of Physical Chemistry, 1992, 96, 10419-10424.	2.9	131
305	Surface chemistry of colloidal silver in aqueous solution: observations on chemisorption and reactivity. The Journal of Physical Chemistry, 1991, 95, 7843-7846.	2.9	191
306	Chemistry of Ag n aggregates in aqueous solution: non-metallic oligomeric clusters and metallic particles. Faraday Discussions, 1991, 92, 31.	1.6	191

#	Article	IF	CITATIONS
307	Formation and Reduction of Semiconductorâ€Like Aggregates of Silverâ€Carboxyâ€Alkaneâ€Thiolates in Aqueous Solution. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1991, 95, 770-777.	0.9	9
308	Photochemistry of Colloidal Silver Particles: The Effects of N2O and Adsorbed CNâ^'. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1991, 95, 838-841.	0.9	48
309	Radiation-induced dissolution of colloidal lead oxide. The Journal of Physical Chemistry, 1990, 94, 8435-8439.	2.9	1
310	Reduction of Ag ⁺ in Aqueous Polyanion Solution: Some Properties and Reactions of Longâ€Lived Oligomeric Silver Clusters and Metallic Silver Particles. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1990, 94, 1449-1457.	0.9	99
311	Kinetics of reductive dissolution of colloidal manganese dioxide. The Journal of Physical Chemistry, 1990, 94, 8339-8345.	2.9	41
312	Formation of unstabilized oligomeric silver clusters during the reduction of Ag+ ions in aqueous solution. Chemical Physics Letters, 1990, 168, 391-394.	1.2	42
313	Long-lived nonmetallic silver clusters in aqueous solution: a pulse radiolysis study of their formation. The Journal of Physical Chemistry, 1990, 94, 4182-4188.	2.9	123
314	Long-lived nonmetallic silver clusters in aqueous solution: preparation and photolysis. Journal of the American Chemical Society, 1990, 112, 4657-4664.	6.6	269
315	Electron transfer in aqueous colloidal tin dioxide solutions. Langmuir, 1990, 6, 567-572.	1.6	48
316	Radiation-induced dissolution of colloidal manganese oxides. Journal of Colloid and Interface Science, 1988, 121, 70-80.	5.0	15
317	Charge trapping in the reductive dissolution of colloidal suspensions of iron(III) oxides. Langmuir, 1988, 4, 1206-1211.	1.6	72
318	The effects of pH and adsorbed hydrolysed metal ions on the photodissolution of colloidal cadmium sulphide. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1987, 91, 231-237.	0.9	9