
## **Shuang Cheng**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/622668/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Ultrahighâ€Performance Pseudocapacitor Electrodes Based on Transition Metal Phosphide Nanosheets<br>Array via Phosphorization: A General and Effective Approach. Advanced Functional Materials, 2015, 25,<br>7530-7538.                                    | 14.9 | 359       |
| 2  | A Low ost, Selfâ€6tanding NiCo <sub>2</sub> O <sub>4</sub> @CNT/CNT Multilayer Electrode for<br>Flexible Asymmetric Solidâ€6tate Supercapacitors. Advanced Functional Materials, 2017, 27, 1702160.                                                        | 14.9 | 277       |
| 3  | Anomalous Pseudocapacitive Behavior of a Nanostructured, Mixed-Valent Manganese Oxide Film for<br>Electrical Energy Storage. Nano Letters, 2012, 12, 3483-3490.                                                                                            | 9.1  | 234       |
| 4  | Phase evolution of an alpha MnO 2 -based electrode for pseudo-capacitors probed by in operando<br>Raman spectroscopy. Nano Energy, 2014, 9, 161-167.                                                                                                       | 16.0 | 195       |
| 5  | A high-performance anode for lithium ion batteries: Fe <sub>3</sub> O <sub>4</sub> microspheres<br>encapsulated in hollow graphene shells. Journal of Materials Chemistry A, 2015, 3, 11847-11856.                                                         | 10.3 | 159       |
| 6  | Defect Engineering in Single-Layer MoS <sub>2</sub> Using Heavy Ion Irradiation. ACS Applied Materials<br>& Interfaces, 2018, 10, 42524-42533.                                                                                                             | 8.0  | 138       |
| 7  | Investigation into the origin of high stability of δ-MnO2 pseudo-capacitive electrode using operando<br>Raman spectroscopy. Nano Energy, 2016, 30, 293-302.                                                                                                | 16.0 | 109       |
| 8  | Investigations into the origin of pseudocapacitive behavior of Mn <sub>3</sub> O <sub>4</sub><br>electrodes using in operando Raman spectroscopy. Journal of Materials Chemistry A, 2015, 3, 7338-7344.                                                    | 10.3 | 104       |
| 9  | Construction and Performance Characterization of α-Fe <sub>2</sub> O <sub>3</sub> /rGO Composite<br>for Long-Cycling-Life Supercapacitor Anode. ACS Sustainable Chemistry and Engineering, 2017, 5,<br>5067-5074.                                          | 6.7  | 98        |
| 10 | In Operando Mechanism Analysis on Nanocrystalline Silicon Anode Material for Reversible and<br>Ultrafast Sodium Storage. Advanced Materials, 2017, 29, 1604708.                                                                                            | 21.0 | 95        |
| 11 | Synthesis and Characterization of Self-Standing and Highly Flexible δ-MnO <sub>2</sub> @CNTs/CNTs<br>Composite Films for Direct Use of Supercapacitor Electrodes. ACS Applied Materials & Interfaces,<br>2016, 8, 23721-23728.                             | 8.0  | 83        |
| 12 | Improving the Electrocatalytic Activity and Durability of the<br>La <sub>0.6</sub> Sr <sub>0.4</sub> Co <sub>0.2</sub> Fe <sub>0.8</sub> O <sub>3â~'Î</sub> Cathode by<br>Surface Modification. ACS Applied Materials & Interfaces, 2018, 10, 39785-39793. | 8.0  | 71        |
| 13 | A high-performance electrode for supercapacitors: Silver nanoparticles grown on a porous<br>perovskite-type material La0.7Sr0.3CoO3â <sup>~1</sup> δ substrate. Chemical Engineering Journal, 2017, 328, 1-10.                                             | 12.7 | 69        |
| 14 | A direct carbon solid oxide fuel cell operated on a plant derived biofuel with natural catalyst. Applied<br>Energy, 2016, 179, 1232-1241.                                                                                                                  | 10.1 | 67        |
| 15 | Carbon fiber paper supported hybrid nanonet/nanoflower nickel oxide electrodes for high-performance pseudo-capacitors. Journal of Materials Chemistry A, 2013, 1, 7709.                                                                                    | 10.3 | 66        |
| 16 | Phase transition–induced electrochemical performance enhancement of hierarchical CoCO3/CoO<br>nanostructure for pseudocapacitor electrode. Nano Energy, 2015, 11, 736-745.                                                                                 | 16.0 | 65        |
| 17 | Fast Energy Storage in Two-Dimensional MoO <sub>2</sub> Enabled by Uniform Oriented Tunnels. ACS<br>Nano, 2019, 13, 9091-9099.                                                                                                                             | 14.6 | 59        |
| 18 | Porous Functionalized Self-Standing Carbon Fiber Paper Electrodes for High-Performance Capacitive<br>Energy Storage. ACS Applied Materials & Interfaces, 2017, 9, 13173-13180.                                                                             | 8.0  | 40        |

SHUANG CHENG

| #  | Article                                                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | A promising water-in-salt electrolyte for aqueous based electrochemical energy storage cells with a<br>wide potential window: highly concentrated HCOOK. Chemical Communications, 2019, 55, 12817-12820.                                                                           | 4.1  | 35        |
| 20 | Growth and photoluminescence of CdS and CdS:Mn Nanoribbons. Materials Letters, 2011, 65, 2776-2778.                                                                                                                                                                                | 2.6  | 30        |
| 21 | Investigation into the energy storage behaviour of layered α-V2O5 as a pseudo-capacitive electrode<br>using operando Raman spectroscopy and a quartz crystal microbalance. Physical Chemistry Chemical<br>Physics, 2017, 19, 24689-24695.                                          | 2.8  | 22        |
| 22 | Self-standing ultrathin NiCo2S4@carbon nanotubes and carbon nanotubes hybrid films as<br>battery-type electrodes for advanced flexible supercapacitors. Journal of Power Sources, 2022, 543,<br>231829.                                                                            | 7.8  | 21        |
| 23 | Achievement of a polymer-free KAc gel electrolyte for advanced aqueous K-Ion battery. Energy Storage<br>Materials, 2021, 41, 133-140.                                                                                                                                              | 18.0 | 19        |
| 24 | Template synthesis of carbon-coated Co9S8 composite with largely improved capacity for lithium ion batteries. Materials Letters, 2018, 217, 163-166.                                                                                                                               | 2.6  | 18        |
| 25 | Simple and Cost-Effective Approach To Dramatically Enhance the Durability and Capability of a Layered<br>Î-MnO <sub>2</sub> Based Electrode for Pseudocapacitors: A Practical Electrochemical Test and<br>Mechanistic Revealing. ACS Applied Energy Materials, 2019, 2, 2743-2750. | 5.1  | 17        |
| 26 | Synthesis of biomass-derived 3D porous graphene-like via direct solid-state transformation and its potential utilization in lithium-ion battery. Ionics, 2018, 24, 1879-1886.                                                                                                      | 2.4  | 16        |
| 27 | Targeted synthesis and reaction mechanism discussion of Mo <sub>2</sub> C based insertion-type electrodes for advanced pseudocapacitors. Journal of Materials Chemistry A, 2020, 8, 7819-7827.                                                                                     | 10.3 | 14        |
| 28 | Fabrication of TiO <sub>2</sub> coated porous CoMn <sub>2</sub> O <sub>4</sub> submicrospheres for advanced lithium-ion anodes. RSC Advances, 2017, 7, 21214-21220.                                                                                                                | 3.6  | 13        |
| 29 | <b>Achieving Durable and Fast Charge Storage of MoO2-Based Insertion-Type Pseudocapacitive<br/>Electrodes via N-Doped Carbon Coating</b> . ACS Sustainable Chemistry and Engineering, 2020, 8,<br>2806-2813.                                                                       | 6.7  | 13        |
| 30 | Enhanced capacitive performance of nickel oxide on porous LaO·7SrO·3CoO3-δ ceramic substrate for<br>electrochemical capacitors. International Journal of Hydrogen Energy, 2018, 43, 19589-19599.                                                                                   | 7.1  | 12        |
| 31 | Achievement of high energy carbon based supercapacitors in acid solution enabled by the balance of SSA with abundant micropores and conductivity. Electrochimica Acta, 2020, 353, 136562.                                                                                          | 5.2  | 9         |
| 32 | Investigation into the electrochemical behaviour of silver in alkaline solution and the influence of<br>Au-decoration using <i>operando</i> Raman spectroscopy. RSC Advances, 2020, 10, 8453-8459.                                                                                 | 3.6  | 9         |
| 33 | Scientific Challenges and Improvement Strategies of Znâ€Based Anodes for Aqueous Znâ€Ion Batteries.<br>Chemical Record, 2022, 22, .                                                                                                                                                | 5.8  | 9         |
| 34 | Crystal Imperfection Modulation Engineering for Functionalization of Wide Band Gap Semiconductor<br>Radiation Detector. Advanced Electronic Materials, 2018, 4, 1700307.                                                                                                           | 5.1  | 8         |
| 35 | A facile and cost-effective approach to fabricate flexible graphene films for aqueous available current<br>collectors. Carbon, 2020, 170, 264-269.                                                                                                                                 | 10.3 | 8         |
| 36 | Achievement of high durability of δ-MnO2 based pseudocapacitive electrode enabled by Zn doping<br>induced reattachment. Journal of Alloys and Compounds, 2020, 834, 155117.                                                                                                        | 5.5  | 7         |

SHUANG CHENG

| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Charge storage behavior and reaction mechanism of α-Fe2O3 as anodes for aqueous batteries. Journal of Alloys and Compounds, 2021, 859, 157789.                                                                          | 5.5  | 7         |
| 38 | Facile synthesis of MoO2/Mo-GO with high initial columbic efficiency and enhanced lithiation ability.<br>Materials Letters, 2019, 254, 332-335.                                                                         | 2.6  | 6         |
| 39 | Target synthesis of dense C-coated ZnO for advanced lithium storage via a facile and cost-effective approach. Ionics, 2021, 27, 423-428.                                                                                | 2.4  | 5         |
| 40 | Towards a broad-operation window for stable CO <sub>2</sub> electroreduction to HCOOH by a design involving upcycling electroplating sludge-derived Sn@N/P-doped carbon. Environmental Science: Nano, 2022, 9, 511-522. | 4.3  | 5         |
| 41 | Fabrication of a cost-effective cation exchange membrane for advanced energy storage in a decoupled alkaline-neutral electrolyte system. Chemical Engineering Journal, 2022, 443, 136435.                               | 12.7 | 5         |
| 42 | Target design towards HER inhibition for an electrolytic Mn//MnO2 aqueous battery with high discharge voltage. Surfaces and Interfaces, 2022, 29, 101782.                                                               | 3.0  | 3         |
| 43 | Development and enhancement strategy of MoSe2 based anodes for aqueous Li-ion battery. Journal of<br>Science: Advanced Materials and Devices, 2022, 7, 100455.                                                          | 3.1  | 2         |
| 44 | Energetic influence of methylene blue on the electrochemical performance of activated carbon in a water-in-salt electrolyte. Ionics, 2022, 28, 2481-2488.                                                               | 2.4  | 1         |
| 45 | Modulation on Radiative Recombination Rate of CdS Nanobelts by Selective Rare Earth Ions. Crystal<br>Research and Technology, 2021, 56, 2000170.                                                                        | 1.3  | 0         |