
Frank T-C Tsai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6226422/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimization of Large-Scale Hydropower System Operations. Journal of Water Resources Planning and Management - ASCE, 2003, 129, 178-188.	2.6	224
2	A comparison study of DRASTIC methods with various objective methods for groundwater vulnerability assessment. Science of the Total Environment, 2018, 642, 1032-1049.	8.0	151
3	Optimization of DRASTIC method by supervised committee machine artificial intelligence to assess groundwater vulnerability for Maragheh–Bonab plain aquifer, Iran. Journal of Hydrology, 2013, 503, 89-100.	5.4	138
4	Prediction of effluent quality parameters of a wastewater treatment plant using a supervised committee fuzzy logic model. Journal of Cleaner Production, 2018, 180, 539-549.	9.3	126
5	Lattice Boltzmann method with two relaxation times for advection–diffusion equation: Third order analysis and stability analysis. Advances in Water Resources, 2008, 31, 1113-1126.	3.8	82
6	Inverse groundwater modeling for hydraulic conductivity estimation using Bayesian model averaging and variance window. Water Resources Research, 2008, 44, .	4.2	77
7	Optimization of an adaptive neuro-fuzzy inference system for groundwater potential mapping. Hydrogeology Journal, 2019, 27, 2511-2534.	2.1	76
8	Prediction and structural uncertainty analyses of artificial neural networks using hierarchical Bayesian model averaging. Journal of Hydrology, 2015, 528, 52-62.	5.4	69
9	Global-local optimization for parameter structure identification in three-dimensional groundwater modeling. Water Resources Research, 2003, 39, .	4.2	68
10	A Combinatorial Optimization Scheme for Parameter Structure Identification in Ground Water Modeling. Ground Water, 2003, 41, 156-169.	1.3	61
11	Bayesian model averaging for groundwater head prediction and uncertainty analysis using multimodel and multimethod. Water Resources Research, 2009, 45, .	4.2	61
12	Non-negativity and stability analyses of lattice Boltzmann method for advection–diffusion equation. Journal of Computational Physics, 2009, 228, 236-256.	3.8	60
13	Supervised committee machine with artificial intelligence for prediction of fluoride concentration. Journal of Hydroinformatics, 2013, 15, 1474-1490.	2.4	60
14	Bayesian Artificial Intelligence Model Averaging for Hydraulic Conductivity Estimation. Journal of Hydrologic Engineering - ASCE, 2014, 19, 520-532.	1.9	52
15	Optimization of Water Distribution and Water Quality by Hybrid Genetic Algorithm. Journal of Water Resources Planning and Management - ASCE, 2005, 131, 431-440.	2.6	50
16	Hydrogeochemical analysis for Tasuj plain aquifer, Iran. Journal of Earth System Science, 2013, 122, 1091-1105.	1.3	47
17	Characterization and identification of aquifer heterogeneity with generalized parameterization and Bayesian estimation. Water Resources Research, 2004, 40, .	4.2	46
18	Analysis and Assessment of Hydrochemical Characteristics of Maragheh-Bonab Plain Aquifer, Northwest of Iran. Water Resources Management, 2017, 31, 765-780.	3.9	42

FRANK T-C TSAI

#	Article	IF	CITATIONS
19	Hierarchical Bayesian model averaging for hydrostratigraphic modeling: Uncertainty segregation and comparative evaluation. Water Resources Research, 2013, 49, 5520-5536.	4.2	40
20	Saltwater intrusion modeling in heterogeneous confined aquifers using two-relaxation-time lattice Boltzmann method. Advances in Water Resources, 2009, 32, 620-631.	3.8	38
21	Bayesian model averaging assessment on groundwater management under model structure uncertainty. Stochastic Environmental Research and Risk Assessment, 2010, 24, 845-861.	4.0	38
22	Constructive epistemic modeling of groundwater flow with geological structure and boundary condition uncertainty under the Bayesian paradigm. Journal of Hydrology, 2014, 517, 105-119.	5.4	38
23	Salinity and Soluble Organic Matter on Virus Sorption in Sand and Soil Columns. Ground Water, 2010, 48, 42-52.	1.3	33
24	Conjunctive management of surface and groundwater resources under projected future climate change scenarios. Journal of Hydrology, 2016, 540, 397-411.	5.4	33
25	Twoâ€relaxationâ€time lattice Boltzmann method for the anisotropic dispersive Henry problem. Water Resources Research, 2010, 46, .	4.2	32
26	GPU accelerated lattice Boltzmann model for shallow water flow and mass transport. International Journal for Numerical Methods in Engineering, 2011, 86, 316-334.	2.8	32
27	Multilayer shallow water flow using lattice Boltzmann method with high performance computing. Advances in Water Resources, 2009, 32, 1767-1776.	3.8	30
28	Parallel Inverse Modeling and Uncertainty Quantification for Computationally Demanding Groundwater-Flow Models Using Covariance Matrix Adaptation. Journal of Hydrologic Engineering - ASCE, 2015, 20, .	1.9	28
29	Geophysical parameterization and parameter structure identification using natural neighbors in groundwater inverse problems. Journal of Hydrology, 2005, 308, 269-283.	5.4	27
30	Modeling complex aquifer systems: a case study in Baton Rouge, Louisiana (USA). Hydrogeology Journal, 2017, 25, 601-615.	2.1	27
31	Saltwater scavenging optimization under surrogate uncertainty for a multi-aquifer system. Journal of Hydrology, 2018, 565, 698-710.	5.4	26
32	Bayesian set pair analysis and machine learning based ensemble surrogates for optimal multi-aquifer system remediation design. Journal of Hydrology, 2020, 580, 124280.	5.4	26
33	Conjunctive Management of Large-Scale Pressurized Water Distribution and Groundwater Systems in Semi-Arid Area with Parallel Genetic Algorithm. Water Resources Management, 2009, 23, 1497-1517.	3.9	24
34	Optimal observation network design for conceptual model discrimination and uncertainty reduction. Water Resources Research, 2016, 52, 1245-1264.	4.2	24
35	Multiobjective Spatial Pumping Optimization for Groundwater Management in a Multiaquifer System. Journal of Water Resources Planning and Management - ASCE, 2020, 146, .	2.6	22
36	Indicator geostatistics for reconstructing Baton Rouge aquifer-fault hydrostratigraphy, Louisiana, USA. Hydrogeology Journal, 2013, 21, 1731-1747.	2.1	21

FRANK T-C TSAI

#	Article	IF	CITATIONS
37	Fluid dispersion effects on density-driven thermohaline flow and transport in porous media. Advances in Water Resources, 2013, 61, 12-28.	3.8	21
38	GIS-Based Water Budget Framework for High-Resolution Groundwater Recharge Estimation of Large-Scale Humid Regions. Journal of Hydrologic Engineering - ASCE, 2014, 19, .	1.9	20
39	Comparative study of climate-change scenarios on groundwater recharge, southwestern Mississippi and southeastern Louisiana, USA. Hydrogeology Journal, 2015, 23, 789-806.	2.1	19
40	Enhancing random heterogeneity representation by mixing the kriging method with the zonation structure. Water Resources Research, 2006, 42, .	4.2	18
41	Mixed Integer Linear Fractional Programming for Conjunctive Use of Surface Water and Groundwater. Journal of Water Resources Planning and Management - ASCE, 2016, 142, .	2.6	16
42	Multiple Parameterization for Hydraulic Conductivity Identification. Ground Water, 2008, 46, 851-864.	1.3	15
43	A Hierarchical Bayesian Model Averaging Framework for Groundwater Prediction under Uncertainty. Ground Water, 2015, 53, 305-316.	1.3	15
44	Bayesian experimental design for identification of model propositions and conceptual model uncertainty reduction. Advances in Water Resources, 2015, 83, 148-159.	3.8	15
45	Reply to comment by Ming Ye et al. on "Inverse groundwater modeling for hydraulic conductivity estimation using Bayesian model averaging and variance window― Water Resources Research, 2010, 46,	4.2	12
46	Uncertainty Segregation and Comparative Evaluation in Groundwater Remediation Designs: A Chance-Constrained Hierarchical Bayesian Model Averaging Approach. Journal of Water Resources Planning and Management - ASCE, 2015, 141, .	2.6	12
47	Ensemble Averaging Methods for Quantifying Uncertainty Sources in Modeling Climate Change Impact on Runoff Projection. Journal of Hydrologic Engineering - ASCE, 2017, 22, .	1.9	12
48	Model Development and Calibration of a Saltwater Intrusion Model in Southern California. Journal of the American Water Resources Association, 2007, 43, 1329-1343.	2.4	10
49	Bayesian Chanceâ€Constrained Hydraulic Barrier Design under Geological Structure Uncertainty. Ground Water, 2015, 53, 908-919.	1.3	10
50	Steady-State Approximate Freshwater–Saltwater Interface in a Two-Horizontal-Well Scavenging System. Journal of Hydrologic Engineering - ASCE, 2019, 24, .	1.9	10
51	Applying Zonation Methods and Tabu Search to Improve the Groundâ€Water Modeling ¹ . Journal of the American Water Resources Association, 2008, 44, 107-120.	2.4	9
52	Soil density, elasticity, and the soil-water characteristic curve inverted from field-based seismic P- and S-wave velocity in shallow nearly saturated layered soils. Geophysics, 2015, 80, WB11-WB19.	2.6	8
53	Bayesian Hierarchical Model Uncertainty Quantification for Future Hydroclimate Projections in Southern Hills-Gulf Region, USA. Water (Switzerland), 2019, 11, 268.	2.7	8
54	Modelling and comparing 3-D soil stratigraphy using subsurface borings and cone penetrometer tests in coastal Louisiana, USA. Georisk, 2020, 14, 158-176.	3.5	8

FRANK T-C TSAI

#	Article	IF	CITATIONS
55	Assessment of Aquifer Storage and Recovery Feasibility Using Numerical Modeling and Geospatial Analysis: Application in Louisiana. Journal of the American Water Resources Association, 2021, 57, 505-526.	2.4	8
56	MRT-Lattice Boltzmann Model for Multilayer Shallow Water Flow. Water (Switzerland), 2019, 11, 1623.	2.7	7
57	Accounting for uncertainty in complex alluvial aquifer modeling by Bayesian multi-model approach. Journal of Hydrology, 2021, 601, 126682.	5.4	7
58	Geophysical data integration, stochastic simulation and significance analysis of groundwater responses using ANOVA in the Chicot Aquifer system, Louisiana, USA. Hydrogeology Journal, 2008, 16, 749-764.	2.1	6
59	Indicator Generalized Parameterization for Interpolation Point Selection in Groundwater Inverse Modeling. Journal of Hydrologic Engineering - ASCE, 2009, 14, 233-242.	1.9	6
60	Constructing large-scale complex aquifer systems with big well log data: Louisiana model. Computers and Geosciences, 2021, 148, 104687.	4.2	6
61	Irrigation-Intensive Groundwater Modeling of Complex Aquifer Systems Through Integration of Big Geological Data. Frontiers in Water, 2021, 3, .	2.3	5
62	Understanding impacts of groundwater dynamics on flooding and levees in Greater New Orleans. Journal of Hydrology: Regional Studies, 2020, 32, 100740.	2.4	4
63	Multiobjective Optimization of Relief Well Operations to Improve Levee Safety. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2021, 147, .	3.0	4
64	Aquifer Characterization and Parameter Heterogeneity Estimation with a Coupled Zonation-Geostatistical Method and Natural Neighbors. , 2004, , 1.		3
65	Coupled Semivariogram Uncertainty of Hydrogeological and Geophysical Data on Capture Zone Uncertainty Analysis. Journal of Hydrologic Engineering - ASCE, 2008, 13, 915-925.	1.9	3
66	Modeling sediment texture of river-deltaic wetlands in the Lower Barataria Bay and Lower Breton Sound, Louisiana, USA. Geo-Marine Letters, 2019, 39, 161-173.	1.1	3
67	Advances in analytical solutions for time-dependent solute transport model. Journal of Earth System Science, 2022, 131, .	1.3	3
68	A three-dimensional stratigraphic model of the Mississippi River Delta, USA: implications for river deltaic hydrogeology. Hydrogeology Journal, 2020, 28, 2341-2358.	2.1	2
69	Understanding dynamics of groundwater flows in the Mississippi River Delta. Journal of Hydrology, 2020, 583, 124616.	5.4	2
70	Relief Well Evaluation: Three-Dimensional Modeling and Blanket Theory. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2021, 147, .	3.0	2
71	A Novel Radial Basis Function Approach for Infiltration-Induced Landslides in Unsaturated Soils. Water (Switzerland), 2022, 14, 1036.	2.7	2
72	Model Calibration and Parameter Structure Identification in Characterization of Groundwater Systems. , 2011, , 159-202.		0

#	Article	IF	CITATIONS
73	Review of Groundwater Reactive Transport Models by F. Zhang, GT. Yeh, and J. C. ParkerBentham Science Publishers, Oak Park, IL; 2012; ISBN 978-1-60805-306-3; 244 pp., \$44 Journal of Hydrologic Engineering - ASCE, 2014, 19, 1497-1497.	1.9	0