
John A Auchampach

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6226373/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Conditional depletion of the acetyltransferase Tip60 protects against the damaging effects of myocardial infarction. Journal of Molecular and Cellular Cardiology, 2022, 163, 9-19.	1.9	10
2	A3 adenosine receptor agonists containing dopamine moieties for enhanced interspecies affinity. European Journal of Medicinal Chemistry, 2022, 228, 113983.	5.5	4
3	Measuring cardiomyocyte cell-cycle activity and proliferation in the age of heart regeneration. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H579-H596.	3.2	21
4	Characterization of Novel A ₃ Adenosine Receptor Allosteric Modulators. FASEB Journal, 2022, 36, .	0.5	0
5	Characterization of Dual-Acting A ₃ Adenosine Receptor Positive Allosteric Modulators That Preferentially Enhance Adenosine-Induced Cî± _{i3} and Cî± _{oA} Isoprotein Activation. ACS Pharmacology and Translational Science, 2022, 5, 625-641.	4.9	8
6	Evidence that the acetyltransferase Tip60 induces the DNA damage response and cell-cycle arrest in neonatal cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2021, 155, 88-98.	1.9	8
7	Myh6-driven Cre-recombinase activates the DNA damage response and the cell-cycle in the myocardium in the absence of loxP sites. DMM Disease Models and Mechanisms, 2020, 13, .	2.4	13
8	Llgl1 regulates zebrafish cardiac development by mediating Yap stability in cardiomyocytes. Development (Cambridge), 2020, 147, .	2.5	9
9	Direct Comparison of (N)-Methanocarba and Ribose-Containing 2-Arylalkynyladenosine Derivatives as A ₃ Receptor Agonists. ACS Medicinal Chemistry Letters, 2020, 11, 1935-1941.	2.8	17
10	Truncated (N)-Methanocarba Nucleosides as Partial Agonists at Mouse and Human A ₃ Adenosine Receptors: Affinity Enhancement by <i>N</i> ⁶ -(2-Phenylethyl) Substitution. Journal of Medicinal Chemistry, 2020, 63, 4334-4348.	6.4	17
11	Identification and Characterization of â€~Biased' A ₃ Adenosine Receptor Allosteric Modulators. FASEB Journal, 2020, 34, 1-1.	0.5	0
12	Ability of CP-532,903 to protect mouse hearts from ischemia/reperfusion injury is dependent on expression of A3 adenosine receptors in cardiomyoyctes. Biochemical Pharmacology, 2019, 163, 21-31.	4.4	10
13	Design and in Vivo Characterization of A ₁ Adenosine Receptor Agonists in the Native Ribose and Conformationally Constrained (N)-Methanocarba Series. Journal of Medicinal Chemistry, 2019, 62, 1502-1522.	6.4	22
14	IL-13 promotes in vivo neonatal cardiomyocyte cell cycle activity and heart regeneration. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H24-H34.	3.2	37
15	Evidence that Tip60 Induces the DDR & Cardiomyocyte Replicative Senescence in the Neonatal Heart. FASEB Journal, 2019, 33, 331.2.	0.5	0
16	Activation of adenosine A2A or A2B receptors causes hypothermia in mice. Neuropharmacology, 2018, 139, 268-278.	4.1	20
17	Species differences and mechanism of action of A3 adenosine receptor allosteric modulators. Purinergic Signalling, 2018, 14, 59-71.	2.2	17
18	Structure activity relationship of 2-arylalkynyl-adenine derivatives as human A ₃ adenosine receptor antagonists. MedChemComm, 2018, 9, 1920-1932.	3.4	6

JOHN A AUCHAMPACH

#	Article	IF	CITATIONS
19	Repurposing of a Nucleoside Scaffold from Adenosine Receptor Agonists to Opioid Receptor Antagonists. ACS Omega, 2018, 3, 12658-12678.	3.5	13
20	Hypothermia in mouse is caused by adenosine A1 and A3 receptor agonists and AMP via three distinct mechanisms. Neuropharmacology, 2017, 114, 101-113.	4.1	60
21	Scaffold Repurposing of Nucleosides (Adenosine Receptor Agonists): Enhanced Activity at the Human Dopamine and Norepinephrine Sodium Symporters. Journal of Medicinal Chemistry, 2017, 60, 3109-3123.	6.4	18
22	Lung injury pathways: Adenosine receptor 2B signaling limits development of ischemic bronchiolitis obliterans organizing pneumonia. Experimental Lung Research, 2017, 43, 38-48.	1.2	7
23	Bitopic fluorescent antagonists of the A _{2A} adenosine receptor based on pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine functionalized congeners. MedChemComm, 2017, 8, 1659-1667.	3.4	15
24	Purine (N)-Methanocarba Nucleoside Derivatives Lacking an Exocyclic Amine as Selective A3 Adenosine Receptor Agonists. Journal of Medicinal Chemistry, 2016, 59, 3249-3263.	6.4	14
25	Depletion of Tip60 from In Vivo Cardiomyocytes Increases Myocyte Density, Followed by Cardiac Dysfunction, Myocyte Fallout and Lethality. PLoS ONE, 2016, 11, e0164855.	2.5	18
26	Rigidified A3 Adenosine Receptor Agonists: 1-Deazaadenine Modification Maintains High in Vivo Efficacy. ACS Medicinal Chemistry Letters, 2015, 6, 804-808.	2.8	19
27	Structure-based design, synthesis by click chemistry and <i>in vivo</i> activity of highly selective A ₃ adenosine receptor agonists. MedChemComm, 2015, 6, 555-563.	3.4	18
28	Characterization of Dahl salt-sensitive rats with genetic disruption of the A2B adenosine receptor gene: implications for A2B adenosine receptor signaling during hypertension. Purinergic Signalling, 2015, 11, 519-531.	2.2	9
29	In Vivo Phenotypic Screening for Treating Chronic Neuropathic Pain: Modification of <i>C</i> 2-Arylethynyl Group of Conformationally Constrained A ₃ Adenosine Receptor Agonists. Journal of Medicinal Chemistry, 2014, 57, 9901-9914.	6.4	48
30	Rap1b in Smooth Muscle and Endothelium Is Required for Maintenance of Vascular Tone and Normal Blood Pressure. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1486-1494.	2.4	43
31	Adenosine A1 receptors heterodimerize with β1- and β2-adrenergic receptors creating novel receptor complexes with altered G protein coupling and signaling. Cellular Signalling, 2013, 25, 736-742.	3.6	31
32	Rational Design of Sulfonated A ₃ Adenosine Receptor-Selective Nucleosides as Pharmacological Tools To Study Chronic Neuropathic Pain. Journal of Medicinal Chemistry, 2013, 56, 5949-5963.	6.4	44
33	Protection from Myocardial Ischemia/Reperfusion Injury by a Positive Allosteric Modulator of the A ₃ Adenosine Receptor. Journal of Pharmacology and Experimental Therapeutics, 2012, 340, 210-217.	2.5	29
34	Structure-Guided Design of A ₃ Adenosine Receptor-Selective Nucleosides: Combination of 2-Arylethynyl and Bicyclo[3.1.0]hexane Substitutions. Journal of Medicinal Chemistry, 2012, 55, 4847-4860.	6.4	76
35	Stress-Induced Cell-Cycle Activation in Tip60 Haploinsufficient Adult Cardiomyocytes. PLoS ONE, 2012, 7, e31569.	2.5	18
36	Activity of LUF6000 and LUF6096 as positive allosteric modulators (PAMs) for the A3 adenosine receptor (AR) is speciesâ€dependent. FASEB Journal, 2012, 26, 851.3.	0.5	0

JOHN A AUCHAMPACH

#	Article	IF	CITATIONS
37	Polyamidoamine (PAMAM) dendrimer conjugate specifically activates the A3 adenosine receptor to improve post-ischemic/reperfusion function in isolated mouse hearts. BMC Pharmacology, 2011, 11, 11.	0.4	20
38	A Role for the Low-Affinity A _{2B} Adenosine Receptor in Regulating Superoxide Generation by Murine Neutrophils. Journal of Pharmacology and Experimental Therapeutics, 2011, 338, 1004-1012.	2.5	46
39	Synthesis and pharmacological characterization of [125I]MRS5127, a high affinity, selective agonist radioligand for the A3 adenosine receptor. Biochemical Pharmacology, 2010, 79, 967-973.	4.4	21
40	Activation of the A3 adenosine receptor inhibits fMLP-induced Rac activation in mouse bone marrow neutrophils. Biochemical Pharmacology, 2010, 79, 1667-1673.	4.4	11
41	A3 adenosine receptor activation during reperfusion reduces infarct size through actions on bone marrow-derived cells. Journal of Molecular and Cellular Cardiology, 2010, 49, 280-286.	1.9	45
42	Cardiovascular Biology of the A3 Adenosine Receptor. , 2010, , 189-208.		0
43	Characterization of the A _{2B} Adenosine Receptor from Mouse, Rabbit, and Dog. Journal of Pharmacology and Experimental Therapeutics, 2009, 329, 2-13.	2.5	37
44	Design of (N)-methanocarba adenosine 5′-uronamides as species-independent A3 receptor-selective agonists. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 2813-2819.	2.2	43
45	The A ₃ Adenosine Receptor Agonist CP-532,903 [<i>N</i> ⁶ -(2,5-Dichlorobenzyl)-3â \in 2-aminoadenosine-5â \in 2- <i>N</i> -methylcarboxamide] Protects against Myocardial Ischemia/Reperfusion Injury via the Sarcolemmal ATP-Sensitive Potassium Channel. Iournal of Pharmacology and Experimental Therapeutics. 2008. 324. 234-243.	2.5	71
46	Activation of the A ₃ Adenosine Receptor Suppresses Superoxide Production and Chemotaxis of Mouse Bone Marrow Neutrophils. Molecular Pharmacology, 2008, 74, 685-696.	2.3	70
47	Differential expression and signaling of adenosine receptors in mouse bone marrow neutrophils. FASEB Journal, 2008, 22, 729.5.	0.5	0
48	Adenosine Receptors and Angiogenesis. Circulation Research, 2007, 101, 1075-1077.	4.5	65
49	Reperfusion injury: Does it exist?. Journal of Molecular and Cellular Cardiology, 2007, 42, 12-18.	1.9	99
50	Adenosine Inhibits Tumor Necrosis Factor-α Release from Mouse Peritoneal Macrophages via A2Aand A2Bbut Not the A3Adenosine Receptor. Journal of Pharmacology and Experimental Therapeutics, 2006, 317, 172-180.	2.5	177
51	Cl-IB-MECA [2-Chloro-N6-(3-iodobenzyl)adenosine-5′-N-methylcarboxamide] Reduces Ischemia/Reperfusion Injury in Mice by Activating the A Adenosine Receptor. Journal of Pharmacology and Experimental Therapeutics, 2006, 319, 1200-1210.	2.5	92
52	Characterization of expression and function of adenosine receptors in mouse neutrophils. FASEB Journal, 2006, 20, A249.	0.5	1
53	The A 3 AR agonist CPâ€532,903 provides protection in two different mouse models of ischemia/reperfusion injury. FASEB Journal, 2006, 20, A230.	0.5	0
54	The A 2A adenosine receptor inhibits LPSâ€induced TNFâ€Î± release from murine peritoneal macrophages through a PKAâ€independent pathway. FASEB Journal, 2006, 20, .	0.5	0

#	ARTICLE	IF	CITATIONS
55	Comparison of Three Different A1 Adenosine Receptor Antagonists on Infarct Size and Multiple Cycle Ischemic Preconditioning in Anesthetized Dogs. Journal of Pharmacology and Experimental Therapeutics, 2004, 308, 846-856.	2.5	36
56	Renal effects of BG9928, an A1 adenosine receptor antagonist, in rats and nonhuman primates. Drug Development Research, 2003, 58, 486-492.	2.9	12
57	A3adenosine receptor agonist IB-MECA reduces myocardial ischemia-reperfusion injury in dogs. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H607-H613.	3.2	59
58	Gene Dosage-Dependent Effects of Cardiac-Specific Overexpression of the A3Adenosine Receptor. Circulation Research, 2002, 91, 165-172.	4.5	77
59	Targeted Deletion of the A3Adenosine Receptor Confers Resistance to Myocardial Ischemic Injury and does not Prevent Early Preconditioning. Journal of Molecular and Cellular Cardiology, 2001, 33, 825-830.	1.9	74
60	Cyclooxygenase-2 does not mediate late preconditioning induced by activation of adenosine A ₁ or A ₃ receptors. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H959-H968.	3.2	29
61	Protection of IB-MECA against myocardial stunning in conscious rabbits is not mediated by the A1 adenosine receptor. Basic Research in Cardiology, 2001, 96, 487-496.	5.9	18
62	A ₁ or A ₃ Adenosine Receptors Induce Late Preconditioning Against Infarction in Conscious Rabbits by Different Mechanisms. Circulation Research, 2001, 88, 520-528.	4.5	127
63	Adenosine receptor subtypes in the heart: therapeutic opportunities and challenges. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 276, H1113-H1116.	3.2	42
64	A3 adenosine receptor activation attenuates neutrophil function and neutrophil-mediated reperfusion injury. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 277, H1895-H1905.	3.2	54
65	Canine Mast Cell Adenosine Receptors: Cloning and Expression of the A ₃ Receptor and Evidence that Degranulation Is Mediated by the A _{2B} Receptor. Molecular Pharmacology, 1997, 52, 846-860.	2.3	193
66	Selective Activation of A 3 Adenosine Receptors With N 6 -(3-Iodobenzyl)Adenosine-5â€2- N -Methyluronamide Protects Against Myocardial Stunning and Infarction Without Hemodynamic Changes in Conscious Rabbits. Circulation Research, 1997, 80, 800-809.	4.5	154
67	Reduction in Myocardial Infarct Size by the New Potassium Channel Opener Bimakalim. Journal of Cardiovascular Pharmacology, 1994, 23, 554-561.	1.9	29
68	Relationship of Severity of Myocardial Stunning to ATP Dependent Potassium Channel Modulation. Journal of Cardiac Surgery, 1993, 8, 279-283.	0.7	8