Andreas Zumbuehl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6225394/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nature Biotechnology, 2008, 26, 561-569.	17.5	1,076
2	A biodegradable and biocompatible gecko-inspired tissue adhesive. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2307-2312.	7.1	490
3	Synthesis and Characterization of Photocurable Elastomers from Poly(glycerol- <i>co</i> -sebacate). Biomacromolecules, 2007, 8, 3067-3073.	5.4	266
4	Shear-stress sensitive lenticular vesicles for targeted drug delivery. Nature Nanotechnology, 2012, 7, 536-543.	31.5	248
5	Non-leaching surfaces capable of killing microorganisms on contact. Journal of Materials Chemistry, 2009, 19, 7796.	6.7	153
6	Rapid Optimization of Gene Delivery by Parallel End-modification of Poly(β-amino ester)s. Molecular Therapy, 2007, 15, 1306-1312.	8.2	118
7	Antifungal hydrogels. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12994-12998.	7.1	101
8	Gene Delivery Properties of End-Modified Poly(β-amino ester)s. Bioconjugate Chemistry, 2007, 18, 1887-1896.	3.6	75
9	The use of shear stress for targeted drug delivery. Cardiovascular Research, 2013, 99, 328-333.	3.8	72
10	An Amphotericin B–Fluorescein Conjugate as a Powerful Probe for Biochemical Studies of the Membrane. Angewandte Chemie - International Edition, 2004, 43, 5181-5185.	13.8	53
11	Rapid Optimization of Gene Delivery by Parallel End-modification of Poly(β-amino ester)s. Molecular Therapy, 2007, 15, 1306-12.	8.2	47
12	Biologically Active Amphotericin B-Calix[4]arene Conjugates. Bioconjugate Chemistry, 2006, 17, 1460-1463.	3.6	46
13	Structure and conserved function of iso-branched sphingoid bases from the nematode Caenorhabditis elegans. Chemical Science, 2017, 8, 3676-3686.	7.4	39
14	Nearâ€Infrared Light Triggeredâ€Release in Deep Brain Regions Using Ultraâ€photosensitive Nanovesicles. Angewandte Chemie - International Edition, 2020, 59, 8608-8615.	13.8	36
15	Vesicle Origami and the Influence of Cholesterol on Lipid Packing. Langmuir, 2016, 32, 4896-4903.	3.5	32
16	The synthesis of 1,3-diamidophospholipids. Tetrahedron Letters, 2010, 51, 5382-5384.	1.4	30
17	Vesicle Origami: Cuboid Phospholipid Vesicles Formed by Templateâ€Free Selfâ€Assembly. Angewandte Chemie - International Edition, 2017, 56, 6515-6518.	13.8	29
18	Bilayer Properties of 1,3-Diamidophospholipids. Langmuir, 2015, 31, 1879-1884.	3.5	26

ANDREAS ZUMBUEHL

#	Article	IF	CITATIONS
19	Amphotericin B as a Potential Probe of the Physical State of Vesicle Membranes. Organic Letters, 2004, 6, 3683-3686.	4.6	24
20	Exit-strategies – smart ways to release phospholipid vesicle cargo. Journal of Materials Chemistry B, 2014, 2, 247-252.	5.8	23
21	Clickosomes—using triazole-linked phospholipid connectors to fuse vesicles. Chemical Communications, 2012, 48, 1604-1606.	4.1	20
22	Monolayer Properties of 1,3-Diamidophospholipids. Langmuir, 2013, 29, 9428-9435.	3.5	20
23	Rigid Urea and Self-Healing Thiourea Ethanolamine Monolayers. Langmuir, 2015, 31, 1296-1302.	3.5	18
24	Surprising lack of liposome-induced complement activation by artificial 1,3-diamidophospholipids in vitro. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 845-849.	3.3	18
25	A novel strategy for bioconjugation: synthesis and preliminary evaluation with amphotericin B. Organic and Biomolecular Chemistry, 2007, 5, 1339.	2.8	16
26	Immunological response to nitroglycerin-loaded shear-responsive liposomes in vitro and in vivo. Journal of Controlled Release, 2017, 264, 14-23.	9.9	15
27	1-Deoxydihydroceramide causes anoxic death by impairing chaperonin-mediated protein folding. Nature Metabolism, 2019, 1, 996-1008.	11.9	15
28	Correlation of surface pressure and hue of planarizable push–pull chromophores at the air/water interface. Beilstein Journal of Organic Chemistry, 2017, 13, 1099-1105.	2.2	14
29	Artificial Phospholipids and Their Vesicles. Langmuir, 2019, 35, 10223-10232.	3.5	14
30	Liposome ontaining Mechanoresponsive Hydrogels. Macromolecular Materials and Engineering, 2017, 302, 1600549.	3.6	13
31	Synthesis and Investigation of Tryptophan–Amphotericin B Conjugates. ChemBioChem, 2009, 10, 1617-1620.	2.6	11
32	Phase behavior of selected artificial lipids. Current Opinion in Colloid and Interface Science, 2014, 19, 17-24.	7.4	11
33	Facile and Rapid Formation of Giant Vesicles from Glass Beads. Polymers, 2018, 10, 54.	4.5	10
34	Spatially resolved small-angle X-ray scattering for characterizing mechanoresponsive liposomes using microfluidics. Materials Today Bio, 2019, 1, 100003.	5.5	10
35	Flipper Probes for the Community. Chimia, 2021, 75, 1004.	0.6	9
36	Synthesis and Biophysical Characterization of an Odd-Numbered 1,3-Diamidophospholipid. Langmuir, 2018, 34, 3215-3220.	3.5	8

ANDREAS ZUMBUEHL

#	Article	IF	CITATIONS
37	Improvement of DNA Vector Delivery of DOTAP Lipoplexes by Short-Chain Aminolipids. ACS Omega, 2020, 5, 24724-24732.	3.5	8
38	Morphology of atherosclerotic coronary arteries. Proceedings of SPIE, 2012, , .	0.8	6
39	Small-Angle Neutron Scattering Study of Temperature-Induced Structural Changes in Liposomes. Langmuir, 2019, 35, 11210-11216.	3.5	6
40	Activity of the Gramicidin A Ion Channel in a Lipid Membrane with Switchable Physical Properties. Langmuir, 2019, 35, 14959-14966.	3.5	6
41	Nearâ€Infrared Light Triggeredâ€Release in Deep Brain Regions Using Ultraâ€photosensitive Nanovesicles. Angewandte Chemie, 2020, 132, 8686-8693.	2.0	6
42	The synthesis of an amine-bearing polymerizable phospholipid. Tetrahedron Letters, 2011, 52, 4215-4217.	1.4	5
43	Vesicle Origami: Cuboid Phospholipid Vesicles Formed by Templateâ€Free Selfâ€Assembly. Angewandte Chemie, 2017, 129, 6615-6618.	2.0	5
44	Nonnatural Phospholipids: Probing Nature's Modular Platform. Chimia, 2009, 63, 63.	0.6	5
45	BODP - A Versatile Reagent for Phospholipid Synthesis. Synthesis, 2011, 2011, 778-782.	2.3	4
46	Putting the 'P' into Phospholipids. Chimia, 2011, 65, 859.	0.6	4
47	Phosphate Test 2.0. Chimia, 2013, 67, 819-821.	0.6	4
48	Against the rules: pressure induced transition from high to reduced order. Soft Matter, 2018, 14, 3978-3986.	2.7	4
49	Immunocompatibility of Rad-PC-Rad liposomes in vitro, based on human complement activation and cytokine release. Precision Nanomedicine, 2018, 1, 43-62.	0.8	4
50	Chemical Biology Approaches to Membrane Homeostasis and Function. Chimia, 2011, 65, 849-852.	0.6	3
51	Study of surfactant alcohols with various chemical moieties at the hydrophilic–hydrophobic interface. RSC Advances, 2013, 3, 7237.	3.6	3
52	Characterization of mechano-sensitive nano-containers for targeted vasodilation. Proceedings of SPIE, 2016, , .	0.8	2
53	Tuning the Thickness of a Biomembrane by Stapling Diamidophospholipids with Bolalipids. Langmuir, 2020, 36, 8610-8616.	3.5	2
54	Recent Advances in Nonviral Gene Transfection – A Decade of Research into Poly-(?-amino esters). Chimia, 2009, 63, 288.	0.6	1

ANDREAS ZUMBUEHL

#	Article	IF	CITATIONS
55	Shear Stress as Drug Delivery Trigger. Chimia, 2012, 66, 715.	0.6	1
56	Stereochemistry at Bürgenstock: Chemical Biology and Organic Synthesis in Focus. Angewandte Chemie - International Edition, 2008, 47, 5496-5499.	13.8	0
57	The 43rd EUCHEM Conference on Stereochemistry (Bürgenstock Conference 2008) Fürigen, April 12–18, 2008. Chimia, 2008, 62, 525-528.	0.6	0
58	Motivation, Politics and Funding at the Second 'Young Faculty Meeting'. Chimia, 2009, 63, 586-587.	0.6	0
59	Organic Chemistry à la Genevoise. Chimia, 2009, 63, 816.	0.6	0
60	Conference report of the 43rd Chemistry CUSO Summer School Villars 2012: Inorganic and Metallosupramolecular Polymers. Chimia, 2013, 67, 81.	0.6	0
61	X-ray micro computed tomography for the visualization of an atherosclerotic human coronary artery. Journal of Physics: Conference Series, 2017, 849, 012002.	0.4	0
62	Understanding Vesicle Origami. Chimia, 2018, 72, 153-153.	0.6	0
63	Gecko-Inspired Tape-Based Adhesives. , 2012, , 195-223.		0