Andre M Goffinet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6225306/publications.pdf

Version: 2024-02-01

36 3,534 23 papers citations h-index

36 36 3987
all docs docs citations times ranked citing authors

361022

35

g-index

#	Article	IF	CITATIONS
1	The evolution of cortical development: the synapsid-diapsid divergence. Development (Cambridge), 2017, 144, 4061-4077.	2.5	17
2	Frizzled3Shapes the Development of Retinal Rod Bipolar Cells. , 2016, 57, 2788.		7
3	The atypical cadherin Celsr1 functions non-cell autonomously to block rostral migration of facial branchiomotor neurons in mice. Developmental Biology, 2016, 417, 40-49.	2.0	17
4	Patterning of papillae on the mouse tongue: A system for the quantitative assessment of planar cell polarity signaling. Developmental Biology, 2016, 419, 298-310.	2.0	21
5	Feedback regulation of apical progenitor fate by immature neurons through Wnt7–Celsr3–Fzd3 signalling. Nature Communications, 2016, 7, 10936.	12.8	39
6	Lack of Diaph3 relaxes the spindle checkpoint causing the loss of neural progenitors. Nature Communications, 2016, 7, 13509.	12.8	24
7	Celsr3 and Fzd3 Organize a Pioneer Neuron Scaffold to Steer Growing Thalamocortical Axons. Cerebral Cortex, 2016, 26, 3323-3334.	2.9	37
8	Celsr3 and Fzd3 in axon guidance. International Journal of Biochemistry and Cell Biology, 2015, 64, 11-14.	2.8	29
9	Celsr3 is required in motor neurons to steer their axons in the hindlimb. Nature Neuroscience, 2014, 17, 1171-1179.	14.8	59
10	Shaping the nervous system: role of the core planar cell polarity genes. Nature Reviews Neuroscience, 2013, 14, 525-535.	10.2	112
11	Atypical Cadherins Celsr1–3 and Planar Cell Polarity in Vertebrates. Progress in Molecular Biology and Translational Science, 2013, 116, 193-214.	1.7	21
12	Celsr1–3 Cadherins in PCP and Brain Development. Current Topics in Developmental Biology, 2012, 101, 161-183.	2.2	47
13	Cilia: conductors' batons of neuronal maturation. Nature Neuroscience, 2012, 15, 344-345.	14.8	4
14	p73 and p63: Estranged relatives?. Cell Cycle, 2011, 10, 1351-1351.	2.6	4
15	Planar cell polarity signaling in neural development. Current Opinion in Neurobiology, 2010, 20, 572-577.	4.2	53
16	Lack of cadherins Celsr2 and Celsr3 impairs ependymal ciliogenesis, leading to fatal hydrocephalus. Nature Neuroscience, 2010, 13, 700-707.	14.8	304
17	Atypical Cadherins Celsr1-3 Differentially Regulate Migration of Facial Branchiomotor Neurons in Mice. Journal of Neuroscience, 2010, 30, 9392-9401.	3 . 6	99
18	Maturation of "Neocortex Isole" In Vivo in Mice. Journal of Neuroscience, 2010, 30, 7928-7939.	3.6	40

#	Article	IF	CITATIONS
19	DeltaNp73 transcription factors modulate cell survival and tumor development. Cell Cycle, 2010, 9, 1523-1527.	2.6	19
20	DeltaNp73 regulates neuronal survival in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16871-16876.	7.1	145
21	Early Forebrain Wiring: Genetic Dissection Using Conditional <i>Celsr3</i> Mutant Mice. Science, 2008, 320, 946-949.	12.6	161
22	The Atypical Cadherin Celsr3 Regulates the Development of the Axonal Blueprint. Novartis Foundation Symposium, 2008, 288, 130-140.	1.1	5
23	Processing of Reelin by Embryonic Neurons Is Important for Function in Tissue But Not in Dissociated Cultured Neurons. Journal of Neuroscience, 2007, 27, 4243-4252.	3.6	132
24	Reelin Signals through Phosphatidylinositol 3-Kinase and Akt To Control Cortical Development and through mTor To Regulate Dendritic Growth. Molecular and Cellular Biology, 2007, 27, 7113-7124.	2.3	210
25	The Central Fragment of Reelin, Generated by Proteolytic Processing In Vivo, Is Critical to Its Function during Cortical Plate Development. Journal of Neuroscience, 2004, 24, 514-521.	3.6	183
26	Reelin and brain development. Nature Reviews Neuroscience, 2003, 4, 496-505.	10.2	669
27	Neuronal migration. Mechanisms of Development, 2001, 105, 47-56.	1.7	176
28	Reelin mRNA expression during embryonic brain development in the chick. Journal of Comparative Neurology, 2000, 422, 448-463.	1.6	57
29	Embryonic and Early Fetal Development of the Human Neocortex. Journal of Neuroscience, 2000, 20, 1858-1868.	3.6	194
30	Prenatal development of reelin-immunoreactive neurons in the human neocortex. Journal of Comparative Neurology, 1998, 397, 29-40.	1.6	168
31	Cyclin-Dependent Kinase 5-Deficient Mice Demonstrate Novel Developmental Arrest in Cerebral Cortex. Journal of Neuroscience, 1998, 18, 6370-6377.	3.6	294
32	The human transient subpial granular layer: An optical, immunohistochemical, and ultrastructural analysis. Journal of Comparative Neurology, 1992, 324, 94-114.	1.6	80
33	In vitro Pharmacological Profile of 3-N-(2-Fluoroethyl)Spiperone. Journal of Cerebral Blood Flow and Metabolism, 1990, 10, 140-142.	4.3	12
34	Brain glucose utilization in childhood Huntington's disease studied with positron emission tomography (PET). Brain and Development, 1988, 10, 47-50.	1.1	16
35	Brain glucose metabolism in children with the autistic syndrome: Positron tomography analysis. Brain and Development, 1987, 9, 581-587.	1.1	69
36	Leukotriene C4 binding sites in mouse brain: pharmacological characteristics. European Journal of Pharmacology, 1987, 140, 343-347.	3.5	10