
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6224786/publications.pdf Version: 2024-02-01

KALLOHNSSON

#	Article	IF	CITATIONS
1	Engineered HaloTag variants for fluorescence lifetime multiplexing. Nature Methods, 2022, 19, 65-70.	9.0	65
2	Fluorescent and Bioluminescent Calcium Indicators with Tuneable Colors and Affinities. Journal of the American Chemical Society, 2022, 144, 6928-6935.	6.6	24
3	A synergistic strategy to develop photostable and bright dyes with long Stokes shift for nanoscopy. Nature Communications, 2022, 13, 2264.	5.8	49
4	Live-Cell Fluorescence Lifetime Multiplexing Using Synthetic Fluorescent Probes. ACS Chemical Biology, 2022, 17, 1321-1327.	1.6	14
5	Mitochondrial NAD+ Controls Nuclear ARTD1-Induced ADP-Ribosylation. Molecular Cell, 2021, 81, 340-354.e5.	4.5	31
6	Kinetic and Structural Characterization of the Self-Labeling Protein Tags HaloTag7, SNAP-tag, and CLIP-tag. Biochemistry, 2021, 60, 2560-2575.	1.2	78
7	Systematic Tuning of Rhodamine Spirocyclization for Super-resolution Microscopy. Journal of the American Chemical Society, 2021, 143, 14592-14600.	6.6	77
8	Sequential in vivo labeling of insulin secretory granule pools in <i>INS</i> - <i>SNAP</i> transgenic pigs. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	7
9	A general strategy to develop cell permeable and fluorogenic probes for multicolour nanoscopy. Nature Chemistry, 2020, 12, 165-172.	6.6	240
10	SLC25A51 is a mammalian mitochondrial NAD+ transporter. Nature, 2020, 588, 174-179.	13.7	158
11	Environmentally Sensitive Color‣hifting Fluorophores for Bioimaging. Angewandte Chemie - International Edition, 2020, 59, 21880-21884.	7.2	49
12	Environmentally Sensitive Colorâ€ S hifting Fluorophores for Bioimaging. Angewandte Chemie, 2020, 132, 22064-22068.	1.6	18
13	6,11-Dioxobenzo[<i>f</i>]pyrido[1,2- <i>a</i>]indoles Kill <i>Mycobacterium tuberculosis</i> by Targeting Iron–Sulfur Protein Rv0338c (IspQ), A Putative Redox Sensor. ACS Infectious Diseases, 2020, 6, 3015-3025.	1.8	9
14	Activatable fluorescent probes for hydrolase enzymes based on coumarin–hemicyanine hybrid fluorophores with large Stokes shifts. Chemical Communications, 2020, 56, 5617-5620.	2.2	28
15	Chemogenetic Control of Nanobodies. Nature Methods, 2020, 17, 279-282.	9.0	58
16	Super-resolution microscopy compatible fluorescent probes reveal endogenous glucagon-like peptide-1 receptor distribution and dynamics. Nature Communications, 2020, 11, 467.	5.8	88
17	Photoactivation of silicon rhodamines via a light-induced protonation. Nature Communications, 2019, 10, 4580.	5.8	48
18	A ligand-based system for receptor-specific delivery of proteins. Scientific Reports, 2019, 9, 19214.	1.6	8

#	Article	IF	CITATIONS
19	A biosensor for measuring NAD+ levels at the point of care. Nature Metabolism, 2019, 1, 1219-1225.	5.1	37
20	A Chemogenetic Approach for the Optical Monitoring of Voltage in Neurons. Angewandte Chemie - International Edition, 2019, 58, 2341-2344.	7.2	34
21	A Chemogenetic Approach for the Optical Monitoring of Voltage in Neurons. Angewandte Chemie, 2019, 131, 2363-2366.	1.6	6
22	Small-Molecule Fluorescent Probes for Live-Cell Super-Resolution Microscopy. Journal of the American Chemical Society, 2019, 141, 2770-2781.	6.6	357
23	Control of mechanical pain hypersensitivity in mice through ligand-targeted photoablation of TrkB-positive sensory neurons. Nature Communications, 2018, 9, 1640.	5.8	93
24	The metabolite BH4 controls T cell proliferation in autoimmunity and cancer. Nature, 2018, 563, 564-568.	13.7	174
25	Unintended specificity of an engineered ligand-binding protein facilitated by unpredicted plasticity of the protein fold. Protein Engineering, Design and Selection, 2018, 31, 375-387.	1.0	6
26	Semisynthetic sensor proteins enable metabolic assays at the point of care. Science, 2018, 361, 1122-1126.	6.0	120
27	Semisynthetic biosensors for mapping cellular concentrations of nicotinamide adenine dinucleotides. ELife, 2018, 7, .	2.8	84
28	A New Fluorogenic Small-Molecule Labeling Tool for Surface Diffusion Analysis and Advanced Fluorescence Imaging of β-Site Amyloid Precursor Protein-Cleaving Enzyme 1 Based on Silicone Rhodamine: SiR-BACE1. Journal of Medicinal Chemistry, 2018, 61, 6121-6139.	2.9	29
29	SNAP-Tagged Nanobodies Enable Reversible Optical Control of a G Protein-Coupled Receptor <i>via</i> a Remotely Tethered Photoswitchable Ligand. ACS Chemical Biology, 2018, 13, 2682-2688.	1.6	41
30	Bioluminescent Antibodies for Pointâ€of are Diagnostics. Angewandte Chemie, 2017, 129, 7218-7222.	1.6	13
31	Bioluminescent Antibodies for Pointâ€of are Diagnostics. Angewandte Chemie - International Edition, 2017, 56, 7112-7116.	7.2	64
32	Expression proteomics study to determine metallodrug targets and optimal drug combinations. Scientific Reports, 2017, 7, 1590.	1.6	19
33	Rational Design and Applications of Semisynthetic Modular Biosensors: SNIFITs and LUCIDs. Methods in Molecular Biology, 2017, 1596, 101-117.	0.4	13
34	Luciferases with Tunable Emission Wavelengths. Angewandte Chemie, 2017, 129, 14748-14752.	1.6	10
35	Luciferases with Tunable Emission Wavelengths. Angewandte Chemie - International Edition, 2017, 56, 14556-14560.	7.2	63
36	Differences in cisplatin distribution in sensitive and resistant ovarian cancer cells: a TEM/NanoSIMS study. Metallomics, 2017, 9, 1413-1420.	1.0	34

#	Article	IF	CITATIONS
37	Evaluating Cellular Drug Uptake with Fluorescent Sensor Proteins. ACS Sensors, 2017, 2, 1191-1197.	4.0	20
38	ldentification of aminopyrimidineâ€sulfonamides as potent modulators of Wag31â€mediated cell elongation in mycobacteria. Molecular Microbiology, 2017, 103, 13-25.	1.2	22
39	Highly Modular Bioluminescent Sensors for Small Molecules and Proteins. Methods in Enzymology, 2017, 589, 365-382.	0.4	4
40	Sampling and energy evaluation challenges in ligand binding protein design. Protein Science, 2017, 26, 2426-2437.	3.1	34
41	Computational design of environmental sensors for the potent opioid fentanyl. ELife, 2017, 6, .	2.8	78
42	Acetylated tubulin is essential for touch sensation in mice. ELife, 2016, 5, .	2.8	78
43	A General Strategy for the Semisynthesis of Ratiometric Fluorescent Sensor Proteins with Increased Dynamic Range. Journal of the American Chemical Society, 2016, 138, 5258-5261.	6.6	46
44	Chemical Genetic Screen Identifies Natural Products that Modulate Centriole Number. ChemBioChem, 2016, 17, 2063-2074.	1.3	5
45	Fluorogenic Probes for Multicolor Imaging in Living Cells. Journal of the American Chemical Society, 2016, 138, 9365-9368.	6.6	218
46	Tetrahydrobiopterin Biosynthesis as a Potential Target of the Kynurenine Pathway Metabolite Xanthurenic Acid. Journal of Biological Chemistry, 2016, 291, 652-657.	1.6	45
47	Modulating protein activity using tethered ligands with mutually exclusive binding sites. Nature Communications, 2015, 6, 7830.	5.8	41
48	Reduction of Neuropathic and Inflammatory Pain through Inhibition of the Tetrahydrobiopterin Pathway. Neuron, 2015, 86, 1393-1406.	3.8	101
49	SiR–Hoechst is a far-red DNA stain for live-cell nanoscopy. Nature Communications, 2015, 6, 8497.	5.8	244
50	NanoSIMS analysis of an isotopically labelled organometallic ruthenium(<scp>ii</scp>) drug to probe its distribution and state in vitro. Chemical Communications, 2015, 51, 16486-16489.	2.2	39
51	Imaging and manipulating proteins in live cells through covalent labeling. Nature Chemical Biology, 2015, 11, 917-923.	3.9	184
52	Genetic targeting of chemical indicators in vivo. Nature Methods, 2015, 12, 137-139.	9.0	61
53	Fluorescent Labeling of SNAP-Tagged Proteins in Cells. Methods in Molecular Biology, 2015, 1266, 107-118.	0.4	17
54	A Fluorogenic Probe for SNAP-Tagged Plasma Membrane Proteins Based on the Solvatochromic Molecule Nile Red. ACS Chemical Biology, 2014, 9, 606-612.	1.6	85

#	Article	IF	CITATIONS
55	Sensing Acetylcholine and Anticholinesterase Compounds. Angewandte Chemie - International Edition, 2014, 53, 1302-1305.	7.2	39
56	Strategic blinking. Nature Chemistry, 2014, 6, 663-664.	6.6	14
57	Bioluminescent sensor proteins for point-of-care therapeutic drug monitoring. Nature Chemical Biology, 2014, 10, 598-603.	3.9	161
58	Fluorogenic probes for live-cell imaging of the cytoskeleton. Nature Methods, 2014, 11, 731-733.	9.0	705
59	Computational design of ligand-binding proteins with high affinity and selectivity. Nature, 2013, 501, 212-216.	13.7	370
60	Identification of a small molecule with activity against drug-resistant and persistent tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2510-7.	3.3	188
61	Tetrahydrobiopterin Biosynthesis as an Off-Target of Sulfa Drugs. Science, 2013, 340, 987-991.	6.0	87
62	Selective Chemical Crosslinking Reveals a Cep57-Cep63-Cep152 Centrosomal Complex. Current Biology, 2013, 23, 265-270.	1.8	102
63	A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. Nature Chemistry, 2013, 5, 132-139.	6.6	779
64	Investigating Endocytic Pathways to the Endoplasmic Reticulum and to the Cytosol Using <scp>SNAP</scp> â€Trap. Traffic, 2013, 14, 36-46.	1.3	19
65	Protein tag-mediated conjugation of oligonucleotides to recombinant affinity binders for proximity ligation. New Biotechnology, 2013, 30, 144-152.	2.4	33
66	Yeast Threeâ€Hybrid Screening for Identifying Antiâ€Tuberculosis Drug Targets. ChemBioChem, 2013, 14, 2239-2242.	1.3	8
67	[Letter to the editor]: Commercial Cdk1 antibodies recognize the centrosomal protein Cep152. BioTechniques, 2013, 55, 111-114.	0.8	12
68	Substrates for Improved Live-Cell Fluorescence Labeling of SNAP-tag. Current Pharmaceutical Design, 2013, 19, 5414-5420.	0.9	34
69	WhiB5, a Transcriptional Regulator That Contributes to Mycobacterium tuberculosis Virulence and Reactivation. Infection and Immunity, 2012, 80, 3132-3144.	1.0	54
70	A Fluorescent Sensor for GABA and Synthetic GABA _B Receptor Ligands. Journal of the American Chemical Society, 2012, 134, 19026-19034.	6.6	93
71	Directed Evolution of the Suicide Protein <i>O</i> ⁶ -Alkylguanine-DNA Alkyltransferase for Increased Reactivity Results in an Alkylated Protein with Exceptional Stability. Biochemistry, 2012, 51, 986-994.	1.2	80
72	A Semisynthetic Fluorescent Sensor Protein for Glutamate. Journal of the American Chemical Society, 2012, 134, 7676-7678.	6.6	87

#	Article	IF	CITATIONS
73	Liver-specific ablation of Krüppel-associated box-associated protein 1 in mice leads to male-predominant hepatosteatosis and development of liver adenoma. Hepatology, 2012, 56, 1279-1290.	3.6	47
74	A Caged, Localizable Rhodamine Derivative for Superresolution Microscopy. ACS Chemical Biology, 2012, 7, 289-293.	1.6	79
75	Exploiting Ligand-Protein Conjugates to Monitor Ligand-Receptor Interactions. PLoS ONE, 2012, 7, e37598.	1.1	18
76	Benzothiazinones Are Suicide Inhibitors of Mycobacterial Decaprenylphosphoryl-β- <scp>d</scp> -ribofuranose 2′-Oxidase DprE1. Journal of the American Chemical Society, 2012, 134, 912-915.	6.6	155
77	Triplet Imaging of Oxygen Consumption During the Contraction of a Single Smooth Muscle Cell (A7r5). Advances in Experimental Medicine and Biology, 2012, 737, 263-268.	0.8	1
78	Real-Time Measurements of Protein Dynamics Using Fluorescence Activation-Coupled Protein Labeling Method. Journal of the American Chemical Society, 2011, 133, 6745-6751.	6.6	122
79	Semisynthesis of Fluorescent Metabolite Sensors on Cell Surfaces. Journal of the American Chemical Society, 2011, 133, 16235-16242.	6.6	66
80	NCCR Chemical Biology: Interdisciplinary Research Excellence, Outreach, Education, and New Tools for Switzerland. Chimia, 2011, 65, 832-834.	0.3	2
81	Visualizing Biochemical Activities in Living Cells through Chemistry. Chimia, 2011, 65, 868-871.	0.3	14
82	Chemical Biology Approaches to Membrane Homeostasis and Function. Chimia, 2011, 65, 849-852.	0.3	3
83	Switchable fluorophores for protein labeling in living cells. Current Opinion in Chemical Biology, 2011, 15, 768-774.	2.8	34
84	Labelling cell structures and tracking cell lineage in zebrafish using SNAP-tag. Developmental Dynamics, 2011, 240, 820-827.	0.8	31
85	Development of SNAPâ€Tag Fluorogenic Probes for Washâ€Free Fluorescence Imaging. ChemBioChem, 2011, 12, 2217-2226.	1.3	237
86	Inside Cover: Development of SNAP-Tag Fluorogenic Probes for Wash-Free Fluorescence Imaging (ChemBioChem 14/2011). ChemBioChem, 2011, 12, 2102-2102.	1.3	0
87	Measuring InÂVivo Protein Half-Life. Chemistry and Biology, 2011, 18, 805-815.	6.2	71
88	Searching for the Protein Targets of Bioactive Molecules. Chimia, 2011, 65, 720.	0.3	9
89	A yeast-based screen reveals that sulfasalazine inhibits tetrahydrobiopterin biosynthesis. Nature Chemical Biology, 2011, 7, 375-383.	3.9	111
90	Targeted Photoswitchable Probe for Nanoscopy of Biological Structures. ChemBioChem, 2010, 11, 1361-1363.	1.3	19

#	Article	IF	CITATIONS
91	How to obtain labeled proteins and what to do with them. Current Opinion in Biotechnology, 2010, 21, 766-776.	3.3	259
92	PEC-based bioactive hydrogels crosslinked via phosphopantetheinyl transferase. Materials Research Society Symposia Proceedings, 2010, 1272, 1.	0.1	1
93	Photoactivatable and Photoconvertible Fluorescent Probes for Protein Labeling. ACS Chemical Biology, 2010, 5, 507-516.	1.6	104
94	Triplet Imaging of Oxygen Consumption during the Contraction of a Single Smooth Muscle Cell (A7r5). Biophysical Journal, 2010, 98, 339-349.	0.2	37
95	Phosphopantetheinyl Transferase-Catalyzed Formation of Bioactive Hydrogels for Tissue Engineering. Journal of the American Chemical Society, 2010, 132, 5972-5974.	6.6	73
96	Localizable and Highly Sensitive Calcium Indicator Based on a BODIPY Fluorophore. Analytical Chemistry, 2010, 82, 6472-6479.	3.2	110
97	Fura-2FF-based calcium indicator for protein labeling. Organic and Biomolecular Chemistry, 2010, 8, 3398.	1.5	15
98	Benzothiazinones: Prodrugs That Covalently Modify the Decaprenylphosphoryl-β- <scp>d</scp> -ribose 2′-epimerase DprE1 of <i>Mycobacterium tuberculosis</i> . Journal of the American Chemical Society, 2010, 132, 13663-13665.	6.6	185
99	Using Peptide Loop Insertion Mutagenesis for the Evolution of Proteins. Methods in Molecular Biology, 2010, 634, 217-232.	0.4	5
100	Visualizing biochemical activities in living cells. Nature Chemical Biology, 2009, 5, 63-65.	3.9	44
101	Selective Cross-Linking of Interacting Proteins Using Self-Labeling Tags. Journal of the American Chemical Society, 2009, 131, 17954-17962.	6.6	65
102	Semisynthetic Fluorescent Sensor Proteins Based on Self-Labeling Protein Tags. Journal of the American Chemical Society, 2009, 131, 5873-5884.	6.6	115
103	Indo-1 Derivatives for Local Calcium Sensing. ACS Chemical Biology, 2009, 4, 179-190.	1.6	98
104	Caged Substrates for Protein Labeling and Immobilization. ChemBioChem, 2008, 9, 38-41.	1.3	24
105	An Engineered Protein Tag for Multiprotein Labeling in Living Cells. Chemistry and Biology, 2008, 15, 128-136.	6.2	940
106	Regulation of glutamate metabolism by protein kinases in mycobacteria. Molecular Microbiology, 2008, 70, 1408-1423.	1.2	147
107	Subunit-specific surface mobility of differentially labeled AMPA receptor subunits. European Journal of Cell Biology, 2008, 87, 763-778.	1.6	16
108	A split-protein sensor for studying protein–protein interaction in mycobacteria. Journal of Microbiological Methods, 2008, 73, 79-84.	0.7	25

#	Article	IF	CITATIONS
109	A Designed Protein for the Specific and Covalent Heteroconjugation of Biomolecules. Bioconjugate Chemistry, 2008, 19, 1753-1756.	1.8	20
110	Chemical Tools for Biomolecular Imaging. ACS Chemical Biology, 2007, 2, 31-38.	1.6	217
111	A Covalent Chemical Genotype–Phenotype Linkage for in vitro Protein Evolution. ChemBioChem, 2007, 8, 2191-2194.	1.3	33
112	Inducing and Sensing Protein–Protein Interactions in Living Cells by Selective Cross-linking. Angewandte Chemie - International Edition, 2007, 46, 4281-4284.	7.2	33
113	Chemical probes shed light on protein function. Current Opinion in Structural Biology, 2007, 17, 488-494.	2.6	171
114	Evolving the Substrate Specificity of O6-Alkylguanine-DNA Alkyltransferase through Loop Insertion for Applications in Molecular Imaging. ACS Chemical Biology, 2006, 1, 575-584.	1.6	25
115	Covalent labeling of cell-surface proteins for in-vivo FRET studies. FEBS Letters, 2006, 580, 1654-1658.	1.3	29
116	Chimeric streptavidins with reduced valencies. Nature Methods, 2006, 3, 247-248.	9.0	3
117	Protein Function Microarrays Based on Self-Immobilizing and Self-Labeling Fusion Proteins. ChemBioChem, 2006, 7, 194-202.	1.3	54
118	Post-translational Covalent Labeling Reveals Heterogeneous Mobility of Individual G Protein-Coupled Receptors in Living Cells. ChemBioChem, 2006, 7, 908-911.	1.3	23
119	Directed evolution of O6-alkylguanine-DNA alkyltransferase for applications in protein labeling. Protein Engineering, Design and Selection, 2006, 19, 309-316.	1.0	136
120	FRET imaging reveals that functional neurokinin-1 receptors are monomeric and reside in membrane microdomains of live cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2138-2143.	3.3	218
121	The Laboratory in a Droplet. Chemistry and Biology, 2005, 12, 1255-1257.	6.2	9
122	Protein Chemistry on the Surface of Living Cells. ChemBioChem, 2005, 6, 47-52.	1.3	53
123	Fast Directed Evolution of Non-Immunoglobulin Proteins by Somatic Hypermutation in Immune Cells. ChemBioChem, 2005, 6, 804-806.	1.3	Ο
124	Adding value to fusion proteins through covalent labelling. Current Opinion in Biotechnology, 2005, 16, 453-458.	3.3	96
125	Engineering Substrate Specificity of O6-Alkylguanine-DNA Alkyltransferase for Specific Protein Labeling in Living Cells. ChemBioChem, 2005, 6, 1263-1269.	1.3	68
126	Multicolor Imaging of Cell Surface Proteins. Journal of the American Chemical Society, 2005, 127, 12770-12771.	6.6	79

#	Article	IF	CITATIONS
127	Protein-Functionalized Polymer Brushes. Biomacromolecules, 2005, 6, 1602-1607.	2.6	214
128	Labeling of fusion proteins with synthetic fluorophores in live cells. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9955-9959.	3.3	411
129	Transforming a $(\hat{l}^2/\hat{l}\pm)$ 8-Barrel Enzyme into a Split-Protein Sensor through Directed Evolution. Chemistry and Biology, 2004, 11, 681-689.	6.2	23
130	Synthesis and characterization of bifunctional probes for the specific labeling of fusion proteins. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 2725-2728.	1.0	27
131	Specific Labeling of Cell Surface Proteins with Chemically Diverse Compounds. Journal of the American Chemical Society, 2004, 126, 8896-8897.	6.6	312
132	Labeling of fusion proteins of O6-alkylguanine-DNA alkyltransferase with small molecules in vivo and in vitro. Methods, 2004, 32, 437-444.	1.9	172
133	A Fusion of Disciplines: Chemical Approaches to Exploit Fusion Proteins for Functional Genomics. ChemInform, 2003, 34, no.	0.1	0
134	A Fusion of Disciplines: Chemical Approaches to Exploit Fusion Proteins for Functional Genomics. ChemBioChem, 2003, 4, 803-810.	1.3	53
135	DNA repair protein O6-methylguanine-DNA methyltransferase in testis and testicular tumors as determined by a novel nonradioactive assay. Analytical Biochemistry, 2003, 321, 38-43.	1.1	15
136	A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nature Biotechnology, 2003, 21, 86-89.	9.4	1,699
137	Directed Evolution of O6-Alkylguanine-DNA Alkyltransferase for Efficient Labeling of Fusion Proteins with Small Molecules In Vivo. Chemistry and Biology, 2003, 10, 313-317.	6.2	279
138	Covalent and Selective Immobilization of Fusion Proteins. Journal of the American Chemical Society, 2003, 125, 7810-7811.	6.6	149
139	Induced Protein Dimerization in Vivo through Covalent Labeling. Journal of the American Chemical Society, 2003, 125, 14970-14971.	6.6	51
140	Covalent Labeling of Fusion Proteins with Chemical Probes in Living Cells. Chimia, 2003, 57, 181-183.	0.3	1
141	Towards the Generation of Artificial O6-Alkylguanine-DNA Alkyltransferases: In Vitro Selection of Antibodies with Reactive Cysteine Residues. ChemBioChem, 2002, 3, 573.	1.3	5
142	Examining Reactivity and Specificity of Cytochrome c Peroxidase by using Combinatorial Mutagenesis. ChemBioChem, 2002, 3, 1097-1104.	1.3	16
143	Changing the Substrate Specificity of Cytochrome c Peroxidase Using Directed Evolution. Biochemical and Biophysical Research Communications, 2001, 286, 126-132.	1.0	26
144	Inter- and intramolecular domain interactions of the catalase-peroxidase KatG fromM. tuberculosis. FEBS Letters, 2001, 509, 272-276.	1.3	15

4

#	Article	IF	CITATIONS
145	Synthesis and Applications of Chemical Probes for HumanO6-Alkylguanine-DNA Alkyltransferase. ChemBioChem, 2001, 2, 285-287.	1.3	28
146	Directed Molecular Evolution of Cytochrome c Peroxidase. Biochemistry, 2000, 39, 10790-10798.	1.2	58
147	Spontaneous Formation of the Bioactive Form of the Tuberculosis Drug Isoniazid. Angewandte Chemie - International Edition, 1999, 38, 2588-2590.	7.2	82
148	Use of site-directed mutagenesis to probe the structure, function and isoniazid activation of the catalase/peroxidase, KatG, from Mycobacterium tuberculosis. Biochemical Journal, 1999, 338, 753-760.	1.7	108
149	Use of site-directed mutagenesis to probe the structure, function and isoniazid activation of the catalase/peroxidase, KatC, from Mycobacterium tuberculosis. Biochemical Journal, 1999, 338, 753.	1.7	38
150	Overexpression, Purification, and Characterization of the Catalase-peroxidase KatG from Mycobacterium tuberculosis. Journal of Biological Chemistry, 1997, 272, 2834-2840.	1.6	144
151	Organization of 'nanocrystal molecules' using DNA. Nature, 1996, 382, 609-611.	13.7	2,852
152	Studies on the Mechanism of Action of Isoniazid and Ethionamide in the Chemotherapy of Tuberculosis. Journal of the American Chemical Society, 1995, 117, 5009-5010.	6.6	204
153	Mechanistic Studies of the Oxidation of Isoniazid by the Catalase Peroxidase from Mycobacterium tuberculosis. Journal of the American Chemical Society, 1994, 116, 7425-7426.	6.6	271
154	Synthesis, structure and activity of artificial, rationally designed catalytic polypeptides. Nature, 1993, 365, 530-532.	13.7	242
155	Triple Helix Binding of Oligodeoxyribonucleotides Containing 8-Oxo-2′-deoxyadenosine. Nucleosides & Nucleotides, 1993, 12, 237-243.	0.5	15
156	A discontinuous epitope on p36, the major substrate of src tyrosine-protein-kinase, brings the phosphorylation site into the neighbourhood of a consensus sequence for Ca2+/lipid-binding proteins. FEBS Letters, 1988, 236, 201-204.	1.3	25
157	Construction of Environmental Libraries for Functional Screening of Enzyme Activity. , 0, , 63-78.		11
158	Exploring the Diversity of Heme Enzymes through Directed Evolution. , 0, , 215-243.		1
159	Using Evolutionary Strategies to Investigate the Structure and Function of Chorismate Mutases. , 0, , 29-62.		0
160	Investigation of Phage Display for the Directed Evolution of Enzymes. , 0, , 79-110.		1
161	Directed Evolution of Binding Proteins by Cell Surface Display: Analysis of the Screening Process. , 0, , 111-126.		1

162 Engineering Protein Evolution. , 0, , 177-213.

#	Article	IF	CITATIONS
163	Yeast n-Hybrid Systems for Molecular Evolution. , 0, , 127-158.		Ο
164	Evolutionary Generation of Enzymes with Novel Substrate Specificities. , 0, , 329-341.		0
165	Evolutionary Biotechnology – From Ideas and Concepts to Experiments and Computer Simulations. , 0, , 5-28.		Ο
166	Applied Molecular Evolution of Enzymes Involved in Synthesis and Repair of DNA. , 0, , 281-307.		4
167	Directed Evolution as a Means to Create Enantioselective Enzymes for Use in Organic Chemistry. , 0, , 245-279.		13
168	Front Matter and Subject Index. , 0, , i-x.		0
169	Advanced Screening Strategies for Biocatalyst Discovery. , 0, , 159-175.		1
170	Evolutionary Generation Versus Rational Design of Restriction Endonucleases with Novel Specificity. , 0, , 309-327.		3
171	AGT/SNAP-Tag: A Versatile Tag for Covalent Protein Labeling. , 0, , 89-107.		2