
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6223789/publications.pdf Version: 2024-02-01

FIENA AIREDDI

#	Article	IF	CITATIONS
1	Amyloid \hat{I}^2 / PKC-dependent alterations in NMDA receptor composition are detected in early stages of Alzheimer´s disease. Cell Death and Disease, 2022, 13, 253.	6.3	16
2	A Neuron, Microglia, and Astrocyte Triple Co-culture Model to Study Alzheimer's Disease. Frontiers in Aging Neuroscience, 2022, 14, 844534.	3.4	18
3	Recombinant Integrin β1 Signal Peptide Blocks Gliosis Induced by Aβ Oligomers. International Journal of Molecular Sciences, 2022, 23, 5747.	4.1	1
4	Polyphenols attenuate mitochondrial dysfunction induced by amyloid peptides. , 2021, , 317-337.		0
5	RNA Localization and Local Translation in Glia in Neurological and Neurodegenerative Diseases: Lessons from Neurons. Cells, 2021, 10, 632.	4.1	15
6	Astrocytes in Alzheimer's Disease: Pathological Significance and Molecular Pathways. Cells, 2021, 10, 540.	4.1	62
7	Oligodendrocyte Differentiation and Myelination Is Potentiated via GABAB Receptor Activation. Neuroscience, 2020, 439, 163-180.	2.3	39
8	Microglia Actively Remodel Adult Hippocampal Neurogenesis through the Phagocytosis Secretome. Journal of Neuroscience, 2020, 40, 1453-1482.	3.6	204
9	Sephin1 Protects Neurons against Excitotoxicity Independently of the Integrated Stress Response. International Journal of Molecular Sciences, 2020, 21, 6088.	4.1	8
10	Mitochondrial division inhibitor 1 disrupts oligodendrocyte Ca ²⁺ homeostasis and mitochondrial function. Glia, 2020, 68, 1743-1756.	4.9	23
11	Early Effects of AÎ ² Oligomers on Dendritic Spine Dynamics and Arborization in Hippocampal Neurons. Frontiers in Synaptic Neuroscience, 2020, 12, 2.	2.5	29
12	Aβ oligomers promote oligodendrocyte differentiation and maturation via integrin β1 and Fyn kinase signaling. Cell Death and Disease, 2019, 10, 445.	6.3	49
13	Contribution of Neurons and Glial Cells to Complement-Mediated Synapse Removal during Development, Aging and in Alzheimer's Disease. Mediators of Inflammation, 2018, 2018, 1-12.	3.0	54
14	Aβ _{1–42} triggers the generation of a retrograde signaling complex from sentinel <scp>mRNA</scp> s in axons. EMBO Reports, 2018, 19, .	4.5	22
15	Mitochondrial Division Inhibitor 1 (mdivi-1) Protects Neurons against Excitotoxicity through the Modulation of Mitochondrial Function and Intracellular Ca2+ Signaling. Frontiers in Molecular Neuroscience, 2018, 11, 3.	2.9	74
16	Isolation, Expansion, and Maturation of Oligodendrocyte Lineage Cells Obtained from Rat Neonatal Brain and Optic Nerve. Methods in Molecular Biology, 2018, 1791, 95-113.	0.9	11
17	Mangiferin and Morin Attenuate Oxidative Stress, Mitochondrial Dysfunction, and Neurocytotoxicity, Induced by Amyloid Beta Oligomers. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-13.	4.0	62
18	Amyloid βâ€induced astrogliosis is mediated by β1â€integrin via NADPH oxidase 2 in Alzheimer's disease. Aging Cell. 2016, 15, 1140-1152.	6.7	53

#	Article	IF	CITATIONS
19	Axon-to-Glia Interaction Regulates GABA _A Receptor Expression in Oligodendrocytes. Molecular Pharmacology, 2016, 89, 63-74.	2.3	43
20	CGP37157, an inhibitor of the mitochondrial Na+/Ca2+ exchanger, protects neurons from excitotoxicity by blocking voltage-gated Ca2+ channels. Cell Death and Disease, 2014, 5, e1156-e1156.	6.3	56
21	Calcium Dyshomeostasis in White Matter Injury. , 2014, , 433-460.		0
22	Ca ²⁺ â€dependent endoplasmic reticulum stress correlates with astrogliosis in oligomeric amyloid βâ€treated astrocytes and in a model of <scp>A</scp> lzheimer's disease. Aging Cell, 2013, 12, 292-302.	6.7	160
23	Zn ²⁺ â€induced ERK activation mediates PARPâ€1â€dependent ischemicâ€reoxygenation damage to oligodendrocytes. Glia, 2013, 61, 383-393.	4.9	36
24	1–42 β-Amyloid peptide requires PDK1/nPKC/Rac 1 pathway to induce neuronal death. Translational Psychiatry, 2013, 3, e219-e219.	4.8	44
25	Oligodendrocyte differentiation from adult multipotent stem cells is modulated by glutamate. Cell Death and Disease, 2012, 3, e268-e268.	6.3	47
26	Calcium Dyshomeostasis in Astrocytes After Ischemia. , 2012, , 103-127.		0
27	Amyloid β peptide oligomers directly activate NMDA receptors. Cell Calcium, 2011, 49, 184-190.	2.4	192
28	Gain-of-function of P2X7 receptor gene variants in multiple sclerosis. Cell Calcium, 2011, 50, 468-472.	2.4	63
29	Dual-specific Phosphatase-6 (Dusp6) and ERK Mediate AMPA Receptor-induced Oligodendrocyte Death. Journal of Biological Chemistry, 2011, 286, 11825-11836.	3.4	46
30	Bax and Calpain Mediate Excitotoxic Oligodendrocyte Death Induced by Activation of Both AMPA and Kainate Receptors. Journal of Neuroscience, 2011, 31, 2996-3006.	3.6	55
31	P2X7 receptors mediate ischemic damage to oligodendrocytes. Clia, 2010, 58, 730-740.	4.9	191
32	Amyloid β oligomers induce Ca2+ dysregulation and neuronal death through activation of ionotropic glutamate receptors. Cell Calcium, 2010, 47, 264-272.	2.4	318
33	Intracellular Ca2+ release through ryanodine receptors contributes to AMPA receptor-mediated mitochondrial dysfunction and ER stress in oligodendrocytes. Cell Death and Disease, 2010, 1, e54-e54.	6.3	88
34	Endoplasmic reticulum Ca2+ release through ryanodine and IP3 receptors contributes to neuronal excitotoxicity. Cell Calcium, 2009, 46, 273-281.	2.4	113
35	CB ₁ cannabinoid receptorâ€dependent and â€independent inhibition of depolarizationâ€induced calcium influx in oligodendrocytes. Glia, 2009, 57, 295-306.	4.9	42
36	A Model of Ischemia-Induced Neuroblast Activation in the Adult Subventricular Zone. PLoS ONE, 2009, 4, e5278.	2.5	19

#	Article	IF	CITATIONS
37	P2X ₇ Receptor Blockade Prevents ATP Excitotoxicity in Oligodendrocytes and Ameliorates Experimental Autoimmune Encephalomyelitis. Journal of Neuroscience, 2007, 27, 9525-9533.	3.6	356
38	Excitotoxic damage to white matter. Journal of Anatomy, 2007, 210, 693-702.	1.5	216
39	Neuroprotection by two polyphenols following excitotoxicity and experimental ischemia. Neurobiology of Disease, 2006, 23, 374-386.	4.4	145
40	Differential oxidative stress in oligodendrocytes and neurons after excitotoxic insults and protection by natural polyphenols. Glia, 2006, 53, 201-211.	4.9	72
41	Activation of Kainate Receptors Sensitizes Oligodendrocytes to Complement Attack. Journal of Neuroscience, 2006, 26, 3220-3228.	3.6	87
42	Calcium and glial cell death. Cell Calcium, 2005, 38, 417-425.	2.4	68
43	Caspase-Dependent and Caspase-Independent Oligodendrocyte Death Mediated by AMPA and Kainate Receptors. Journal of Neuroscience, 2003, 23, 9519-9528.	3.6	134
44	Ca2+ Influx through AMPA or Kainate Receptors Alone Is Sufficient to Initiate Excitotoxicity in Cultured Oligodendrocytes. Neurobiology of Disease, 2002, 9, 234-243.	4.4	110
45	Excitotoxicity in glial cells. European Journal of Pharmacology, 2002, 447, 239-246.	3.5	117
46	The link between excitotoxic oligodendroglial death and demyelinating diseases. Trends in Neurosciences, 2001, 24, 224-230.	8.6	320
47	Binding of Pigment Epithelium-derived Factor (PEDF) to Retinoblastoma Cells and Cerebellar Granule Neurons. Journal of Biological Chemistry, 1999, 274, 31605-31612.	3.4	120
48	Contribution of phosphodiesterase isoenzymes and cyclic nucleotide efflux to the regulation of cyclic GMP levels in aortic smooth muscle cells. Biochemical Pharmacology, 1999, 58, 1675-1683.	4.4	30
49	Synthesis and anti-HIV-1 activities of new pyrimido[5,4-b]indoles. Il Farmaco, 1999, 54, 255-264.	0.9	16
50	Pigment epithelium-derived factor promotes the survival and differentiation of developing spinal motor neurons. Journal of Comparative Neurology, 1999, 412, 506-514.	1.6	105
51	Pigment Epithelium-Derived Factor (PEDF) in the Retina. , 1999, , 519-526.		1
52	Pigment Epithelium-Derived Factor (PEDF) Binds to Glycosaminoglycans:  Analysis of the Binding Site. Biochemistry, 1998, 37, 10643-10652.	2.5	100
53	Inflammation and Noninhibitor Serpins. Advances in Experimental Medicine and Biology, 1997, , 307-339.	1.6	2
54	A checkerboard method to evaluate interactions between drugs. Biochemical Pharmacology, 1996, 51, 635-644.	4.4	70

#	Article	IF	CITATIONS
55	Recombinant human pigment epitheliumâ€derived factor (PEDF): Characterization of PEDF overexpressed and secreted by eukaryotic cells. Protein Science, 1996, 5, 2575-2582.	7.6	54
56	New Indole and Pyridazinoindole Analogs — Synthesis and Study as Inhibitors of Phosphodiesterases and as Inhibitors of Blood Platelet Aggregation. Archiv Der Pharmazie, 1995, 328, 689-698.	4.1	3
57	New 4-Amino-7,8-dimethoxy-5h-pyrimido[5,4-b]indole Derivatives: Synthesis and Studies as Inhibitors of Phosphodiesterases. Archiv Der Pharmazie, 1993, 326, 879-885.	4.1	8
58	A Novel Class of Cardiotonic Agents: Synthesis and Biological Evaluation of Pyridazino[4,5-b]indoles with Cyclic AMP Phosphodiesterases Inhibiting Properties. Journal of Pharmaceutical Sciences, 1993, 82, 526-530.	3.3	6
59	New Indole and Triazino[5,4-b]indol-4-one Derivatives: Synthesis and Studies as Inotropics and Inhibitors of Blood Platelet Aggregation. Archiv Der Pharmazie, 1992, 325, 439-452.	4.1	4