
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6223076/publications.pdf Version: 2024-02-01

FII TZIDEDMAN

#	Article	IF	CITATIONS
1	Spatial Patterns of the Tropical Meridional Circulation: Drivers and Teleconnections. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	4
2	Warmer Pliocene Upwelling Site SST Leads to Wetter Subtropical Coastal Areas: A Positive Feedback on SST. Paleoceanography and Paleoclimatology, 2022, 37, .	2.9	6
3	Deep Eastern Boundary Currents: Idealized Models and Dynamics. Journal of Physical Oceanography, 2021, 51, 989-1005.	1.7	1
4	The Role of Atmospheric Feedbacks in Abrupt Winter Arctic Sea Ice Loss in Future Warming Scenarios. Journal of Climate, 2021, 34, 4435-4447.	3.2	9
5	Laurentide Ice Saddle Mergers Drive Rapid Sea Level Drops During Glaciations. Geophysical Research Letters, 2021, 48, e2021GL094263.	4.0	4
6	Decoupling of the Arctic Oscillation and North Atlantic Oscillation in a warmer climate. Nature Climate Change, 2021, 11, 137-142.	18.8	35
7	Wetter Subtropics Lead to Reduced Pliocene Coastal Upwelling. Paleoceanography and Paleoclimatology, 2021, 36, e2021PA004243.	2.9	7
8	Dynamic Europa ocean shows transient Taylor columns and convection driven by ice melting and salinity. Nature Communications, 2021, 12, 6376.	12.8	21
9	Dynamics of Deep Ocean Eastern Boundary Currents. Geophysical Research Letters, 2020, 47, e2019GL085396.	4.0	4
10	Reconciling the observed mid-depth exponential ocean stratification with weak interior mixing and Southern Ocean dynamics via boundary-intensified mixing. European Physical Journal Plus, 2020, 135, 1.	2.6	3
11	Historical and Future Roles of Internal Atmospheric Variability in Modulating Summertime Greenland Ice Sheet Melt. Geophysical Research Letters, 2020, 47, e2019GL086913.	4.0	2
12	Listening to the Forest: An Artificial Neural Networkâ€Based Model of Carbon Uptake at Harvard Forest. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 461-478.	3.0	4
13	Tropical and extratropical general circulation with a meridional reversed temperature gradient as expected in a high obliquity planet. Icarus, 2019, 330, 142-154.	2.5	11
14	Reductions in Strong Upwellingâ€Favorable Wind Events in the Pliocene. Paleoceanography and Paleoclimatology, 2019, 34, 1931-1944.	2.9	7
15	S2S reboot: An argument for greater inclusion of machine learning in subseasonal to seasonal fo forecasts. Wiley Interdisciplinary Reviews: Climate Change, 2019, 10, e00567.	8.1	48
16	The Role of Zonal Asymmetry in the Enhancement and Suppression of Sudden Stratospheric Warming Variability by the Madden–Julian Oscillation. Journal of Climate, 2018, 31, 2399-2415.	3.2	7
17	The MJOâ€SSW Teleconnection: Interaction Between MJOâ€Forced Waves and the Midlatitude Jet. Geophysical Research Letters, 2018, 45, 4400-4409.	4.0	23
18	More-Persistent Weak Stratospheric Polar Vortex States Linked to Cold Extremes. Bulletin of the American Meteorological Society, 2018, 99, 49-60.	3.3	177

#	Article	IF	CITATIONS
19	Understanding Melting due to Ocean Eddy Heat Fluxes at the Edge of Seaâ€lce Floes. Geophysical Research Letters, 2018, 45, 9721-9730.	4.0	10
20	Dynamics of the global meridional ice flow of Europa's icy shell. Nature Astronomy, 2018, 2, 43-49.	10.1	28
21	Exploring the nonlinear cloud and rain equation. Chaos, 2017, 27, 013107.	2.5	15
22	A full, self-consistent treatment of thermal wind balance on oblate fluid planets. Journal of Fluid Mechanics, 2017, 810, 175-195.	3.4	32
23	The effect of changes in surface winds and ocean stratification on coastal upwelling and sea surface temperatures in the Pliocene. Paleoceanography, 2017, 32, 371-383.	3.0	11
24	Suppression of Arctic Air Formation with Climate Warming: Investigation with a Two-Dimensional Cloud-Resolving Model. Journals of the Atmospheric Sciences, 2017, 74, 2717-2736.	1.7	10
25	More Frequent Sudden Stratospheric Warming Events due to Enhanced MJO Forcing Expected in a Warmer Climate. Journal of Climate, 2017, 30, 8727-8743.	3.2	45
26	Snowball Earth climate dynamics and Cryogenian geology-geobiology. Science Advances, 2017, 3, e1600983.	10.3	424
27	The evolution of scaling laws in the sea ice floe size distribution. Journal of Geophysical Research: Oceans, 2017, 122, 7630-7650.	2.6	29
28	Winter Precipitation Forecast in the European and Mediterranean Regions Using Cluster Analysis. Geophysical Research Letters, 2017, 44, 12,418.	4.0	22
29	Variability, Instabilities, and Eddies in a Snowball Ocean. Journal of Climate, 2016, 29, 869-888.	3.2	15
30	Reductions in midlatitude upwelling-favorable winds implied by weaker large-scale Pliocene SST gradients. Paleoceanography, 2016, 31, 27-39.	3.0	8
31	The role of ice stream dynamics in deglaciation. Journal of Geophysical Research F: Earth Surface, 2016, 121, 1540-1554.	2.8	14
32	Interaction of sea ice floe size, ocean eddies, and sea ice melting. Geophysical Research Letters, 2016, 43, 8083-8090.	4.0	69
33	Low clouds suppress Arctic air formation and amplify high-latitude continental winter warming. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11490-11495.	7.1	32
34	Process-based analysis of climate model ENSO simulations: Intermodel consistency and compensating errors. Journal of Geophysical Research D: Atmospheres, 2014, 119, 7396-7409.	3.3	6
35	Effects of explicit atmospheric convection at high CO ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10943-10948.	7.1	24
36	Using transfer functions to quantify El Niño Southern Oscillation dynamics in data and models. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 470, 20140272.	2.1	7

#	Article	IF	CITATIONS
37	The role of sea ice in the temperature-precipitation feedback of glacial cycles. Climate Dynamics, 2014, 43, 1001-1010.	3.8	9
38	Ocean Circulation under Globally Glaciated Snowball Earth Conditions: Steady-State Solutions. Journal of Physical Oceanography, 2014, 44, 24-43.	1.7	21
39	Nonâ€normal growth of Kelvin–Helmholtz eddies in a sea breeze. Quarterly Journal of the Royal Meteorological Society, 2014, 140, 2147-2157.	2.7	2
40	Multiple sea-ice states and abrupt MOC transitions in a general circulation ocean model. Climate Dynamics, 2013, 40, 1803-1817.	3.8	7
41	Enhanced MJO-like Variability at High SST. Journal of Climate, 2013, 26, 988-1001.	3.2	79
42	Dynamics of a Snowball Earth ocean. Nature, 2013, 495, 90-93.	27.8	58
43	Abrupt Transition to Strong Superrotation Driven by Equatorial Wave Resonance in an Idealized GCM. Journals of the Atmospheric Sciences, 2012, 69, 626-640.	1.7	37
44	Continental constriction and oceanic ice over thickness in a Snowballâ€Earth scenario. Journal of Geophysical Research, 2012, 117, .	3.3	39
45	Correlation between presentâ€day model simulation of Arctic cloud radiative forcing and sea ice consistent with positive winter convective cloud feedback. Journal of Advances in Modeling Earth Systems, 2012, 4, .	3.8	10
46	Excitation of Intraseasonal Variability in the Equatorial Atmosphere by Yanai Wave Groups via WISHE-Induced Convection. Journals of the Atmospheric Sciences, 2011, 68, 210-225.	1.7	10
47	An Atmospheric Teleconnection Linking ENSO and Southwestern European Precipitation. Journal of Climate, 2011, 24, 124-139.	3.2	50
48	Predictability of SST-Modulated Westerly Wind Bursts. Journal of Climate, 2009, 22, 3894-3909.	3.2	45
49	Incorporating a semi-stochastic model of ocean-modulated westerly wind bursts into an ENSO prediction model. Theoretical and Applied Climatology, 2009, 97, 65-73.	2.8	23
50	Rain driven by receding ice sheets as a cause of past climate change. Paleoceanography, 2009, 24, .	3.0	47
51	Pliocene equatorial temperature: Lessons from atmospheric superrotation. Paleoceanography, 2009, 24, .	3.0	54
52	Spatiotemporal dynamics of ice streams due to a triple-valued sliding law. Journal of Fluid Mechanics, 2009, 640, 483-505.	3.4	17
53	A high″atitude convective cloud feedback and equable climates. Quarterly Journal of the Royal Meteorological Society, 2008, 134, 165-185.	2.7	51
54	Sea ice, highâ€latitude convection, and equable climates. Geophysical Research Letters, 2008, 35, .	4.0	71

#	Article	IF	CITATIONS
55	Integrated summer insolation forcing and 40,000â€year glacial cycles: The perspective from an iceâ€sheet/energyâ€balance model. Paleoceanography, 2008, 23, .	3.0	51
56	Optimal Surface Excitation of the Thermohaline Circulation. Journal of Physical Oceanography, 2008, 38, 1820-1830.	1.7	16
57	Nonnormal Thermohaline Circulation Dynamics in a Coupled Ocean–Atmosphere GCM. Journal of Physical Oceanography, 2008, 38, 588-604.	1.7	42
58	Carl Wunsch Special Issue. Journal of Physical Oceanography, 2007, 37, 133-134.	1.7	0
59	Summertime ENSO–North African–Asian Jet teleconnection and implications for the Indian monsoons. Geophysical Research Letters, 2007, 34, .	4.0	53
60	Scenarios regarding the lead of equatorial sea surface temperature over global ice volume. Paleoceanography, 2006, 21, n/a-n/a.	3.0	9
61	Consequences of pacing the Pleistocene 100 kyr ice ages by nonlinear phase locking to Milankovitch forcing. Paleoceanography, 2006, 21, .	3.0	109
62	The Effect of ENSO on Tibetan Plateau Snow Depth: A Stationary Wave Teleconnection Mechanism and Implications for the South Asian Monsoons. Journal of Climate, 2005, 18, 2067-2079.	3.2	164
63	Abrupt climate shifts in Greenland due to displacements of the sea ice edge. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	148
64	Rapid switch-like sea ice growth and land ice-sea ice hysteresis. Paleoceanography, 2004, 19, n/a-n/a.	3.0	18
65	A "triple sea-ice state―mechanism for the abrupt warming and synchronous ice sheet collapses during Heinrich events. Paleoceanography, 2004, 19, n/a-n/a.	3.0	62
66	Sea ice switch mechanism and glacial-interglacial CO2variations. Global Biogeochemical Cycles, 2002, 16, 6-1-6-14.	4.9	43
67	Sea ice as the glacial cycles' Climate switch: role of seasonal and orbital forcing. Paleoceanography, 2000, 15, 605-615.	3.0	160
68	Irregularity and Locking to the Seasonal Cycle in an ENSO Prediction Model as Explained by the Quasi-Periodicity Route to Chaos. Journals of the Atmospheric Sciences, 1995, 52, 293-306.	1.7	153
69	Rates of Water Mass Formation in the North Atlantic Ocean. Journal of Physical Oceanography, 1992, 22, 93-104.	1.7	255
70	On the Role of Interior Mixing and Air-Sea Fluxes in Determining the Stratification and Circulation of the Oceans. Journal of Physical Oceanography, 1986, 16, 680-693.	1.7	106