
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/622253/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	International consensus conference on stool banking for faecal microbiota transplantation in clinical practice. Gut, 2019, 68, 2111-2121.	12.1	290
2	The use of faecal microbiota transplant as treatment for recurrent or refractory <i>Clostridium difficile</i> infection and other potential indications: joint British Society of Gastroenterology (BSG) and Healthcare Infection Society (HIS) guidelines. Gut, 2018, 67, 1920-1941.	12.1	248
3	The evolution of the use of faecal microbiota transplantation and emerging therapeutic indications. Lancet, The, 2019, 394, 420-431.	13.7	234
4	Microbial bile salt hydrolases mediate the efficacy of faecal microbiota transplant in the treatment of recurrent <i>Clostridioides difficile</i> infection. Gut, 2019, 68, 1791-1800.	12.1	182
5	Effects of Fecal Microbiota Transplantation With Oral Capsules in Obese Patients. Clinical Gastroenterology and Hepatology, 2020, 18, 855-863.e2.	4.4	171
6	Bile Acid Profiling and Quantification in Biofluids Using Ultra-Performance Liquid Chromatography Tandem Mass Spectrometry. Analytical Chemistry, 2015, 87, 9662-9670.	6.5	166
7	Fecal Microbiota Transplantation in Patients With Primary Sclerosing Cholangitis: A Pilot Clinical Trial. American Journal of Gastroenterology, 2019, 114, 1071-1079.	0.4	155
8	Optimized Sample Handling Strategy for Metabolic Profiling of Human Feces. Analytical Chemistry, 2016, 88, 4661-4668.	6.5	134
9	Inhibiting Growth of Clostridioides difficile by Restoring Valerate, Produced by the Intestinal Microbiota. Gastroenterology, 2018, 155, 1495-1507.e15.	1.3	127
10	<i>Clostridium difficile</i> infection and antibiotic-associated diarrhoea. Clinical Medicine, 2018, 18, 237-241.	1.9	114
11	Faecal microbiota transplantation for recurrent Clostridioides difficile infection: An updated systematic review and meta-analysis. EClinicalMedicine, 2020, 29-30, 100642.	7.1	111
12	Reorganisation of faecal microbiota transplant services during the COVID-19 pandemic. Gut, 2020, 69, 1555-1563.	12.1	110
13	Screening of faecal microbiota transplant donors during the COVID-19 outbreak: suggestions for urgent updates from an international expert panel. The Lancet Gastroenterology and Hepatology, 2020, 5, 430-432.	8.1	108
14	Review article: depression and the use of antidepressants in patients with chronic liver disease or liver transplantation. Alimentary Pharmacology and Therapeutics, 2014, 40, 880-892.	3.7	100
15	High-Throughput, Machine Learning–Based Quantification of Steatosis, Inflammation, Ballooning, and Fibrosis in Biopsies From Patients With Nonalcoholic Fatty Liver Disease. Clinical Gastroenterology and Hepatology, 2020, 18, 2081-2090.e9.	4.4	85
16	Fecal microbiota and bile acid interactions with systemic and adipose tissue metabolism in diet-induced weight loss of obese postmenopausal women. Journal of Translational Medicine, 2018, 16, 244.	4.4	78
17	Antibiotic therapy and outcome from immune-checkpoint inhibitors. , 2019, 7, 287.		77
18	Functional microbiomics: Evaluation of gut microbiota-bile acid metabolism interactions in health and disease. Methods, 2018, 149, 49-58.	3.8	76

2

#	Article	IF	CITATIONS
19	Immunotoxicity from checkpoint inhibitor therapy: clinical features and underlying mechanisms. Immunology, 2020, 159, 167-177.	4.4	75
20	A randomised controlled study shows supplementation of overweight and obese adults with lactobacilli and bifidobacteria reduces bodyweight and improves well-being. Scientific Reports, 2020, 10, 4183.	3.3	56
21	In-hospital mortality is associated with inflammatory response in NAFLD patients admitted for COVID-19. PLoS ONE, 2020, 15, e0240400.	2.5	54
22	The gut microbiome: an under-recognised contributor to the COVID-19 pandemic?. Therapeutic Advances in Gastroenterology, 2020, 13, 175628482097491.	3.2	50
23	The application of omics techniques to understand the role of the gut microbiota in inflammatory bowel disease. Therapeutic Advances in Gastroenterology, 2019, 12, 175628481882225.	3.2	49
24	Monitoring the Response of the Human Urinary Metabolome to Brief Maximal Exercise by a Combination of RP-UPLC-MS and ¹ H NMR Spectroscopy. Journal of Proteome Research, 2015, 14, 4610-4622.	3.7	46
25	Anticoagulation in chronic liver disease. Journal of Hepatology, 2017, 66, 1313-1326.	3.7	45
26	Effective fecal microbiota transplantation for recurrent <i>Clostridioides difficile</i> infection in humans is associated with increased signalling in the bile acid-farnesoid X receptor-fibroblast growth factor pathway. Gut Microbes, 2019, 10, 142-148.	9.8	44
27	Rapid resolution of COVID-19 after faecal microbiota transplantation. Gut, 2022, 71, 230-232.	12.1	44
28	The use of Faecal Microbiota Transplantation (FMT) in Europe: A Europe-wide survey. Lancet Regional Health - Europe, The, 2021, 9, 100181.	5.6	43
29	Disease Prevention Not Decolonization: A Model for Fecal Microbiota Transplantation in Patients Colonized With Multidrug-resistant Organisms. Clinical Infectious Diseases, 2021, 72, 1444-1447.	5.8	40
30	The use of faecal microbiota transplant as treatment for recurrent or refractory Clostridium difficile infection and other potential indications: joint British Society of Gastroenterology (BSG) and Healthcare Infection Society (HIS) guidelines. Journal of Hospital Infection, 2018, 100, S1-S31.	2.9	38
31	Fecal Microbiota Transplantation: The Evolving Risk Landscape. American Journal of Gastroenterology, 2021, 116, 647-656.	0.4	37
32	Current and future pharmacological therapies for managing cirrhosis and its complications. World Journal of Gastroenterology, 2019, 25, 888-908.	3.3	36
33	Derivation and validation of a cardiovascular risk score for prediction of major acute cardiovascular events in nonâ€alcoholic fatty liver disease; the importance of an elevated mean platelet volume. Alimentary Pharmacology and Therapeutics, 2019, 49, 1077-1085.	3.7	35
34	A Two-Way Interaction between Methotrexate and the Gut Microbiota of Male Sprague–Dawley Rats. Journal of Proteome Research, 2020, 19, 3326-3339.	3.7	35
35	Global Metabolic Stress of Isoeffort Continuous and High Intensity Interval Aerobic Exercise: A Comparative ¹ H NMR Metabonomic Study. Journal of Proteome Research, 2016, 15, 4452-4463.	3.7	33
36	Understanding the mechanisms of efficacy of fecal microbiota transplant in treating recurrent <i>Clostridioides difficile</i> infection and beyond: the contribution of gut microbial-derived metabolites. Gut Microbes, 2020, 12, 1810531.	9.8	32

#	Article	IF	CITATIONS
37	Inflammatory Bowel Disease Outcomes Following Fecal Microbiota Transplantation for Recurrent <i>C. difficile</i> Infection. Inflammatory Bowel Diseases, 2021, 27, 1371-1378.	1.9	31
38	Outcomes of Fecal Microbiota Transplantation in Patients With Inflammatory Bowel Diseases and Recurrent Clostridioides difficile Infection. Gastroenterology, 2020, 159, 1982-1984.	1.3	28
39	Probiotics reduce self-reported symptoms of upper respiratory tract infection in overweight and obese adults: should we be considering probiotics during viral pandemics?. Gut Microbes, 2021, 13, 1-9.	9.8	28
40	Faecal microbiota transplant: a novel biological approach to extensively drug-resistant organism-related non-relapse mortality. Bone Marrow Transplantation, 2017, 52, 1452-1454.	2.4	27
41	Ursodeoxycholic acid enriches intestinal bile salt hydrolase-expressing Bacteroidetes in cholestatic pregnancy. Scientific Reports, 2020, 10, 3895.	3.3	27
42	Fecal microbiota transplant from a rational stool donor improves hepatic encephalopathy: A randomized clinical trial. Hepatology, 2017, 66, 1354-1355.	7.3	25
43	The contribution of bile acid metabolism to the pathogenesis of <i>Clostridioides difficile</i> infection. Therapeutic Advances in Gastroenterology, 2021, 14, 175628482110177.	3.2	24
44	Impact of fecal microbiota transplantation with capsules on the prevention of metabolic syndrome among patients with obesity. Hormones, 2021, 20, 209-211.	1.9	24
45	Systematic review: the association between the gut microbiota and medical therapies in inflammatory bowel disease. Alimentary Pharmacology and Therapeutics, 2022, 55, 26-48.	3.7	23
46	Autotaxin, bile acid profile and effect of ileal bile acid transporter inhibition in primary biliary cholangitis patients with pruritus. Liver International, 2019, 39, 967-975.	3.9	22
47	In search of stool donors: a multicenter study of prior knowledge, perceptions, motivators, and deterrents among potential donors for fecal microbiota transplantation. Gut Microbes, 2020, 11, 51-62.	9.8	22
48	Mechanisms underpinning the efficacy of faecal microbiota transplantation in treating gastrointestinal disease. Therapeutic Advances in Gastroenterology, 2020, 13, 175628482094690.	3.2	21
49	National survey of practice of faecal microbiota transplantation for Clostridium difficile infection in the UK. Journal of Hospital Infection, 2017, 95, 444-445.	2.9	20
50	Fecal microbiota transplantation in gastrointestinal and extraintestinal disorders. Future Microbiology, 2020, 15, 1173-1183.	2.0	18
51	Daily supplementation with the Lab4P probiotic consortium induces significant weight loss in overweight adults. Scientific Reports, 2021, 11, 5.	3.3	18
52	Posters (Abstracts 289–2348). Hepatology, 2019, 70, 188-1382.	7.3	17
53	The Intestinal Barrier and Its Dysfunction in Patients with Metabolic Diseases and Non-Alcoholic Fatty Liver Disease. International Journal of Molecular Sciences, 2022, 23, 662.	4.1	17
54	Comparative epidemiology of Clostridium difficile infection: England and the USA. International Journal for Ouality in Health Care, 2017, 29, 785-791.	1.8	16

#	Article	IF	CITATIONS
55	The gut microbiome: what every gastroenterologist needs to know. Frontline Gastroenterology, 2021, 12, 118-127.	1.8	16
56	The potential utility of fecal (or intestinal) microbiota transplantation in controlling infectious diseases. Gut Microbes, 2022, 14, 2038856.	9.8	16
57	Gaps in knowledge and future directions for the use of faecal microbiota transplant in the treatment of inflammatory bowel disease. Therapeutic Advances in Gastroenterology, 2019, 12, 175628481989103.	3.2	15
58	Introduction to the joint British Society of Gastroenterology (BSG) and Healthcare Infection Society (HIS) faecal microbiota transplant guidelines. Journal of Hospital Infection, 2018, 100, 130-132.	2.9	14
59	Fecal Microbiota Transplant Mitigates Adverse Outcomes Seen in Patients Colonized With Multidrug-Resistant Organisms Undergoing Allogeneic Hematopoietic Cell Transplantation. Frontiers in Cellular and Infection Microbiology, 2021, 11, 684659.	3.9	14
60	A Multi-Factorial Observational Study on Sequential Fecal Microbiota Transplant in Patients with Medically Refractory Clostridioides difficile Infection. Cells, 2021, 10, 3234.	4.1	14
61	Microbiome manipulation with faecal microbiome transplantation as a therapeutic strategy in Clostridium difficile infection. QJM - Monthly Journal of the Association of Physicians, 2015, 108, 355-359.	0.5	13
62	The implementation of omics technologies in cancer microbiome research. Ecancermedicalscience, 2018, 12, 864.	1.1	13
63	Long term outcomes of initial infliximab therapy for inflammatory pouch pathology: a multi-Centre retrospective study. Scandinavian Journal of Gastroenterology, 2018, 53, 1051-1058.	1.5	12
64	Intestinal microbiome transfer, a novel therapeutic strategy for COVID-19 induced hyperinflammation?. Clinical Immunology, 2020, 218, 108542.	3.2	12
65	Non-Alcoholic Fatty Liver Disease and Vascular Disease. Current Vascular Pharmacology, 2020, 19, 269-279.	1.7	12
66	Aspartame Sensitivity? A Double Blind Randomised Crossover Study. PLoS ONE, 2015, 10, e0116212.	2.5	11
67	Effects of bowel preparation on intestinal bacterial associated urine and faecal metabolites and the associated faecal microbiome. BMC Gastroenterology, 2022, 22, 240.	2.0	11
68	Non-alcoholic fatty liver disease and cardiovascular risk: an update. Expert Review of Gastroenterology and Hepatology, 2018, 12, 1175-1177.	3.0	10
69	Fecal microbiota transplantation with ruxolitinib as a treatment modality for steroidâ€refractory/dependent acute, gastrointestinal graftâ€versusâ€host disease: A case series. American Journal of Hematology, 2021, 96, E461-E463.	4.1	10
70	Changes in IgA-targeted microbiota following fecal transplantation for recurrent <i>Clostridioides difficile</i> infection. Gut Microbes, 2021, 13, 1-12.	9.8	10
71	The potential of fecal microbiota transplantation in oncology. Trends in Microbiology, 2022, 30, 10-12.	7.7	9
72	Obstacles to establishing an NHS faecal transplant programme. BMJ, The, 2015, 351, h6043-h6043.	6.0	8

#	Article	IF	CITATIONS
73	Letter: faecal microbiota transplantation for IBS. Alimentary Pharmacology and Therapeutics, 2020, 52, 556-557.	3.7	8
74	Current and future targets for faecal microbiota transplantation. Human Microbiome Journal, 2019, 11, 100045.	3.8	7
75	NAFLD: Time to apply quantitation in liver biopsies as endpoints in clinical trials. Journal of Hepatology, 2021, 74, 241-242.	3.7	7
76	Severe cholestatic jaundice after a single administration of ajmaline; a case report and review of the literature. BMC Gastroenterology, 2014, 14, 60.	2.0	6
77	Antibioticâ€Associated Disruption of Microbiota Composition and Function in Cirrhosis Is Restored by Fecal Transplant. Hepatology, 2018, 68, 1205-1205.	7.3	6
78	Identifying the factors influencing outcome in probiotic studies in overweight and obese patients: host or microbiome?. Gut, 2021, 70, 225-226.	12.1	6
79	How to adapt an intestinal microbiota transplantation programme to reduce the risk of invasive multidrug-resistant infection. Clinical Microbiology and Infection, 2022, 28, 502-512.	6.0	6
80	Impact of gastrointestinal surgery upon the gut microbiome: AÂsystematic review. Surgery, 2021, , .	1.9	6
81	Liver function tests and metabolic-associated fatty liver disease: Changes in upper normal limits, does it really matter?. World Journal of Hepatology, 2021, 13, 2104-2112.	2.0	6
82	Case 25-2014: A Man with Ulcerative Colitis and Bloody Diarrhea. New England Journal of Medicine, 2014, 371, 1848-1849.	27.0	5
83	SARS-CoV-2 vaccines and donor recruitment for FMT. The Lancet Gastroenterology and Hepatology, 2021, 6, 264-266.	8.1	5
84	Bingeâ€eating disorder is associated with an unfavorable body mass composition in patients with nonâ€elcoholic fatty liver disease. International Journal of Eating Disorders, 2021, 54, 2025-2030.	4.0	5
85	Clostridioides difficile: innovations in target discovery and potential for therapeutic success. Expert Opinion on Therapeutic Targets, 2021, , 1-15.	3.4	5
86	Meeting update: faecal microbiota transplantation––bench, bedside, courtroom?. Frontline Gastroenterology, 2018, 9, 45-48.	1.8	4
87	Intestinal microbiota transplantation: do not forget the metabolites. The Lancet Gastroenterology and Hepatology, 2022, 7, 594.	8.1	4
88	Weight loss in a man from West Africa. Gut, 2015, 64, 1846-1846.	12.1	3
89	Letter: improvements in mental health after faecal microbiota transplantation—an underexplored treatmentâ€related benefit?. Alimentary Pharmacology and Therapeutics, 2018, 47, 1562-1563.	3.7	3
90	7 – The Icon Study: Inflammatory Bowel Disease and Recurrent Clostridium Difficile Infection: Outcomes After Fecal Microbiota Transplantation. Gastroenterology, 2019, 156, S-2-S-3.	1.3	3

#	Article	IF	CITATIONS
91	Faecal microbiota transplant for eradication of multidrug-resistant Enterobacteriaceae: a lesson in applying best practice? Re: †A five-day course of oral antibiotics followed by faecal transplantation to eradicate carriage of multidrug-resistant Enterobacteriaceae: A Randomized Clinical Trial'. Clinical Microbiology and Infection, 2019, 25, 912-913.	6.0	3
92	Letter: liver disease and COVID-19-not the perfect storm. Alimentary Pharmacology and Therapeutics, 2020, 52, 572-574.	3.7	3
93	Results of the PROFIT trial, a PROspective randomised placebo-controlled feasibility trial of Faecal mIcrobiota Transplantation in advanced cirrhosis. Journal of Hepatology, 2020, 73, S77-S78.	3.7	3
94	Multiomics Profiling Reveals Signatures of Dysmetabolism in Urban Populations in Central India. Microorganisms, 2021, 9, 1485.	3.6	3
95	Letter: intestinal microbiota transfer—updating the nomenclature to increase acceptability. Alimentary Pharmacology and Therapeutics, 2020, 52, 1622-1623.	3.7	3
96	Understanding the Mechanisms of Efficacy of Fecal Microbiota Transplantation in the Treatment of Clostridium Difficile Infection: The Potential Role of Bilemetabolising Enzymes. Gastroenterology, 2017, 152, S47.	1.3	2
97	25 - Microbiome and Metabolic Markers of Clostridium Difficile Recurrance. Gastroenterology, 2018, 154, S-8-S-9.	1.3	2
98	Editorial: importance of an elevated mean platelet volume for prediction of major adverse cardiovascular events in nonâ€alcoholic fatty liver disease – authors' reply. Alimentary Pharmacology and Therapeutics, 2019, 49, 1093-1094.	3.7	2
99	Sa1924 – Effect of Short Chain Fatty Acids on Gut-Brain Axis Using a Microglial Cell Model. Gastroenterology, 2019, 156, S-455.	1.3	2
100	Faecal microbiota transplantations and urinary tract infections – Authors' reply. Lancet, The, 2020, 395, 271.	13.7	2
101	Bile Acid Profiles are Not Altered by Fecal Microbiota Transplantation for the Treatment of Primary Sclerosing Cholangitis: Category Award (Liver): Presidential Poster Award. American Journal of Gastroenterology, 2018, 113, S574-S576.	0.4	2
102	Shoulder pain and dysphagia with an unexpected cause. BMJ Case Reports, 2011, 2011, bcr0720103176-bcr0720103176.	0.5	1
103	Letter: depression and the use of antiâ€depressants in patients with chronic liver disease or liver transplantation – authors' reply. Alimentary Pharmacology and Therapeutics, 2015, 41, 914-915.	3.7	1
104	PWE-052â€Long term outcomes of initial IFX therapy for inflammatory pouch pathology: a multi-centre retrospective study. , 2018, , .		1
105	PS-174-Serum bile acid profiles distinguish severe alcoholic hepatitis from decompensated alcohol-related cirrhosis. Journal of Hepatology, 2019, 70, e108.	3.7	1
106	621 – Fecal Microbiota Transplantation for the Treatment of Obesity: A Randomized, Placebo-Controlled Pilot Trial. Gastroenterology, 2019, 156, S-129.	1.3	1
107	185 Evaluating Dynamics of Bile Acid Metabolism to Predict Recurrence of Clostridioides difficile Infection. American Journal of Gastroenterology, 2019, 114, S113-S113.	0.4	1
108	Tu1909 IMPACT OF FECAL MICROBIOTA TRANSPLANTATION ON PREVENTION OF METABOLIC SYNDROME AMONG PATIENTS WITH OBESITY. Gastroenterology, 2020, 158, S-1214-S-1215.	1.3	1

#	Article	IF	CITATIONS
109	1144 FECAL MICROBIOTA TRANSPLANT FOR MULTI-DRUG RESISTANT ORGANISMS: IMPROVED CLINICAL OUTCOMES BEYOND INTESTINAL DECOLONISATION. Gastroenterology, 2020, 158, S-227-S-228.	1.3	1
110	121 ULCERATIVE COLITIS PATIENTS ACHEIVE MORE ROBUST ENGRAFTMENT COMPARED TO PATIENTS WITH CROHN'S DISEASE AFTER FECAL MICROBIOTA TRANSPLANTATION FOR THE TREATMENT OF RECURRENT C. DIFFICLE INFECTION. Gastroenterology, 2020, 158, S-22.	1.3	1
111	Non-selective beta-blocker use in cirrhosis: the additional benefit in preventing secondary infections. Frontline Gastroenterology, 2022, 13, flgastro-2021-101818.	1.8	1
112	Reply to Woodworth, et al Clinical Infectious Diseases, 2021, 72, e924-e925.	5.8	1
113	Further Insights Into the Impact of Bariatric Surgery on the Progression of Nonalcoholic Fatty Liver Disease. Gastroenterology, 2022, 163, 528-529.	1.3	1
114	P306 MONOCYTE OXIDATIVE BURST DEFECT PREDICTS RISK OF INFECTION IN ALCOHOLIC HEPATITIS. Journal of Hepatology, 2014, 60, S168.	3.7	0
115	Low Incidence Of Venous Thromboembolism In Mobile Populations. Value in Health, 2014, 17, A152.	0.3	0
116	OC-040â€National Survey of Practice of Faecal Microbiota Transplantation for Clostridium Difficile Infection in the United Kingdom. Gut, 2016, 65, A23.2-A24.	12.1	0
117	PWE-094â€Understanding The Efficacy of Faecal Microbiota Transplantation in Clostridium Difficile Infection: Re-Establishment of Gut Microbiota with The Ability to Degrade Bile?. Gut, 2016, 65, A184.2-A184.	12.1	0
118	The severity of steatosis does not influence liver stiffness measurements in patients with Non-Alcoholic Fatty Liver Disease. Journal of Hepatology, 2017, 66, S586-S587.	3.7	0
119	PWE-093â€Development and validation of an automated system for assessment of liver steatosis and fibrosis in routine: histological images in patients with non-alcoholic fatty liver disease. , 2017, , .		0
120	PWE-094â€The severity of steatosis does not influence liver stiffness measurements in patients with non-alcoholic fatty liver disease. , 2017, , .		0
121	Gastrointestinal: Duodenal variceal bleeding secondary to thrombophiliaâ€related portal vein thrombosis. Journal of Gastroenterology and Hepatology (Australia), 2018, 33, 336-336.	2.8	0
122	1171. Impact on Mortality, Length of Stay, and Antibiotic Use in Allogenic and Autologous Stem Cell Transplant Patients Colonized With Carbapenemase-Producing Enterobacteriaceae. Open Forum Infectious Diseases, 2018, 5, S353-S354.	0.9	0
123	IDDF2018-ABS-0056â€Long term outcomes of initial infliximab therapy for inflammatory pouch pathology: a multi-centre retrospective study. , 2018, , .		0
124	24 - A Novel Route to Controlling Clostridioides Difficile Growth via Short Chain Fatty Acid and Bile Acid Modulation. Gastroenterology, 2018, 154, S-8.	1.3	0
125	A mobile application for the management and follow-up of patients with Non-Alcoholic Fatty Liver Disease. Journal of Hepatology, 2018, 68, S819.	3.7	0
126	Tu1894 - Potential Motivators and Deterents for Stool Donors: A Multicenter Study. Gastroenterology, 2018, 154, S-1051.	1.3	0

#	Article	IF	CITATIONS
127	THU-306-Liver function tests in NAFLD: Changes in upper normal limits, does it really matter?. Journal of Hepatology, 2019, 70, e295.	3.7	0
128	THU-331-Derivation and validation of a cardiovascular risk score for prediction of major acute cardiovascular events in non-alcoholic fatty liver disease: The importance of an elevated mean platelet volume. Journal of Hepatology, 2019, 70, e305.	3.7	0
129	Letter: role of mean platelet volume levels in the prediction of major acute cardiovascular events in patients with nonâ€alcoholic fatty liver disease—authors' reply. Alimentary Pharmacology and Therapeutics, 2019, 50, 1140-1141.	3.7	0
130	Mo1953 – Growth Inhibition of Clostridioides Difficile by Short and Medium Chain Fatty Acids. Gastroenterology, 2019, 156, S-898.	1.3	0
131	SAT-294-Automated quantitation of steatosis, inflammation, ballooning and fibrosis using machine learning in routine histological images of liver biopsies of patients with NAFLD. Journal of Hepatology, 2019, 70, e767-e768.	3.7	0
132	837 Short Chain Fatty Acid Profiles Are Altered by Fecal Microbiota Transplantation for the Treatment of Inflammatory Bowel Disease and Recurrent Clostridioides difficile Infection. American Journal of Gastroenterology, 2019, 114, S484-S485.	0.4	0
133	Recurrent bacteraemia following variceal haemorrhage. Gut, 2020, 69, 726-780.	12.1	0
134	P844 Higher proportions of genera and species in the Firmicutes phylum are associated with a healthy pouch compared with patients with chronic pouchitis. Journal of Crohn's and Colitis, 2020, 14, S652-S652.	1.3	0
135	644 IDENTIFICATION OF NOVEL CHANGES IN MICROBIALLY-DERIVED METABOLITES AFTER FECAL MICROBIOTA TRANSPLANT FOR RECURRENT CLOSTRIDIOIDES DIFFICILE INFECTION. Gastroenterology, 2020, 158, S-138-S-139.	1.3	Ο
136	Mo1939 TEMPORAL MODULATION OF TCR REPERTOIRE FOLLOWING SEQUENTIAL FMT TREATMENT IN PATIENTS WITH SEVERE OR FULMINANT CLOSTRIDIOIDES DIFFICILE INFECTION. Gastroenterology, 2020, 158, S-985-S-986.	1.3	0
137	A Guide to the Gut Microbiome and its Relevance to Critical Care. British Journal of Nursing, 2020, 29, 1106-1112.	0.7	Ο
138	P307â€FMT-associated alterations in the TCR repertoire of patients with severe or fulminant clostridioides difficile infection. , 2021, , .		0
139	Romanian National Guideline on Translating Fecal Microbiota Transplantation Applications related to Clostridioides difficile Infections into the Local Clinical Practice. Journal of Gastrointestinal and Liver Diseases, 2021, 30, 147-163.	0.9	Ο
140	739 DAILY PROBIOTIC USE IS ASSOCIATED WITH A REDUCED RATE OF UPPER RESPIRATORY TRACT SYMPTOMS IN OVERWEIGHT AND OBESE PEOPLE. Gastroenterology, 2021, 160, S-150.	1.3	0
141	Sa022 A HIGH-FIBER LOW-FAT DIET INCREASES FECAL LEVELS OF LITHOCHOLIC ACID DERIVATIVE 3-KETOCHOLANIC ACID. Gastroenterology, 2021, 160, S-393-S-394.	1.3	0
142	Fr571 A DISTINCTIVE SIGNATURE OF FECAL BILE ACIDS AND OTHER NOVEL METABOLITES ACCOMPANYING RECURRENCE AFTER PRIMARY CLOSTRIDIOIDES DIFFICILE INFECTION. Gastroenterology, 2021, 160, S-368.	1.3	0
143	811 FECAL MICROBIOTA TRANSPLANT PRIOR TO ALLOGENEIC HEMATOPOIETIC CELL TRANSPLANT IN PATIENTS COLONIZED WITH MULTI-DRUG RESISTANT ORGANISMS IS ASSOCIATED WITH IMPROVED SURVIVAL. Gastroenterology, 2021, 160, S-168-S-169.	1.3	0
144	Fr573 ASSOCIATION BETWEEN NOVEL METABOLOMIC BIOMARKERS AND C.DIFFICILE RECURRENCE. Gastroenterology, 2021, 160, S-369.	1.3	0

#	Article	IF	CITATIONS
145	Su541 RECTAL SWABS AS A VIABLE ALTERNATIVE TO FECAL SAMPLING FOR THE ANALYSIS OF GUT MICROBIOME FUNCTIONALITY AS WELL AS COMPOSITION. Gastroenterology, 2021, 160, S-733.	1.3	0
146	Renal medicine. , 0, , 251-251.		0
147	Haematology and oncology. , 0, , 159-159.		0
148	Clinical sciences. , 0, , 59-59.		0
149	Respiratory medicine. , 0, , 283-283.		0
150	Clinical pharmacology, therapeutics and toxicology. , 0, , 25-25.		0
151	Tropical, infectious and sexually transmitted diseases. , 0, , 345-345.		0
152	Infectious diseases and GUM. , 0, , 211-211.		0
153	Clinical haematology and oncology. , 0, , 27-27.		0
154	Clinical sciences. , 0, , 95-95.		0
155	Respiratory medicine. , 0, , 329-329.		0
156	MP71-15â€∱PREVALENCE OF RECURRENT EXTENDED-SPECTRUM BETA-LACTAMASE (ESBL) URINARY TRACT INFECTIONS (UTIS) IN PATIENTS WITHIN A UROLOGY SERVICE. INTRODUCING THE CONCEPT OF FAECAL MICROBIOTA TRANSPLANTATION (FMT) AS A TREATMENT MODALITY. Journal of Urology, 2019, 201, .	0.4	0
157	Case-control study of recurrent Extended-Spectrum Beta Lactamase Enterobacteriaceae Urinary Tract Infections (ESBL UTIs): the management challenges. Access Microbiology, 2020, 2, .	0.5	0
158	Sa1923 IDENTIFICATION OF NEW ASSOCIATIONS BETWEEN PSORIATIC ARTHRITIS AND THE GUT MICROBIOTA, A PHENOMIC STUDY. Gastroenterology, 2020, 158, S-481.	1.3	0
159	Cohort study of Faecal Microbiota Transplantation for patient's colonised with MDROs - successful prevention of invasive disease despite low decolonisation rates. Access Microbiology, 2020, 2, .	0.5	0
160	Review of Rifaximin: A Summary of the Current Evidence and Benefits Beyond Licensed Use. European Medical Journal (Chelmsford, England), 0, , 94-100.	3.0	0
161	S0650 Fecal Microbiota Transplantation Decolonizes C. difficile in Patients With Inflammatory Bowel Disease and Concomitant C. difficile Infection. American Journal of Gastroenterology, 2020, 115, S326-S326.	0.4	0
162	Outcomes of postmenopausal women with non-alcoholic fatty liver disease (NAFLD). Endocrine Abstracts, 0, , .	0.0	0