Scott A Trammell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6222110/publications.pdf

Version: 2024-02-01

84 papers

3,527 citations

28 h-index 59 g-index

85 all docs 85 docs citations

85 times ranked 4642 citing authors

#	Article	IF	CITATIONS
1	Perylene-diimide-based n-type semiconductors with enhanced air and temperature stable photoconductor and transistor properties. Dyes and Pigments, 2020, 174, 108014.	3.7	15
2	Extracellular DNA Promotes Efficient Extracellular Electron Transfer by Pyocyanin in Pseudomonas aeruginosa Biofilms. Cell, 2020, 182, 919-932.e19.	28.9	166
3	Multilayer Epitaxial Graphene on Silicon Carbide: A Stable Working Electrode for Seawater Samples Spiked with Environmental Contaminants. Sensors, 2020, 20, 4006.	3.8	4
4	Light tunable plasmonic metasurfaces. Optics Express, 2020, 28, 22891.	3.4	1
5	Machine Learning Techniques for Chemical Identification Using Cyclic Square Wave Voltammetry. Sensors, 2019, 19, 2392.	3.8	31
6	Printed Graphene Electrochemical Biosensors Fabricated by Inkjet Maskless Lithography for Rapid and Sensitive Detection of Organophosphates. ACS Applied Materials & Samp; Interfaces, 2018, 10, 11125-11134.	8.0	112
7	Tunable Subnanometer Gap Plasmonic Metasurfaces. ACS Photonics, 2018, 5, 1012-1018.	6.6	28
8	Non-photochemical catalytic hydrolysis of methyl parathion using core–shell Ag@TiO ₂ nanoparticles. RSC Advances, 2018, 8, 42346-42352.	3.6	9
9	Linear and nonlinear optical characterization of self-assembled, large-area gold nanosphere metasurfaces with sub-nanometer gaps: errata. Optics Express, 2018, 26, 9614.	3.4	1
10	Paper-Based Electrochemical Detection of Chlorate. Sensors, 2018, 18, 328.	3.8	24
11	Coreâ€Shell Ag@TiO ₂ Nanocomposites for Lowâ€Power Blue Laser Enhanced Copper(I) Catalyzed Ullmann Coupling. ChemistrySelect, 2017, 2, 769-773.	1.5	12
12	A luminescent 2,2′-bipyridyl tricarbonyl rhenium(I) complex containing a non-bridging dicyanamide ligand. Inorganic Chemistry Communication, 2017, 83, 55-58.	3.9	1
13	Statistical evaluation of an electrochemical probe for the detection of chlorate. Sensors and Actuators B: Chemical, 2017, 239, 951-961.	7.8	12
14	A Simple and Inexpensive Electrochemical Assay for the Identification of Nitrogen Containing Explosives in the Field. Sensors, 2017, 17, 1769.	3.8	20
15	Plasma-Modified, Epitaxial Fabricated Graphene on SiC for the Electrochemical Detection of TNT. Sensors, 2016, 16, 1281.	3.8	17
16	Linear and nonlinear optical characterization of self-assembled, large-area gold nanosphere metasurfaces with sub-nanometer gaps. Optics Express, 2016, 24, 27360.	3.4	16
17	Photo-enhanced hydrolysis of bis(4-nitrophenyl) phosphate using Cu(<scp>ii</scp>) bipyridine-capped plasmonic nanoparticles. RSC Advances, 2016, 6, 41618-41621.	3.6	4
18	Kinetic analysis of the hydrolysis of methyl parathion using citrate-stabilized 10Ânm gold nanoparticles. Chemosphere, 2016, 144, 1916-1919.	8.2	13

#	Article	IF	CITATIONS
19	Integrating Paper Chromatography with Electrochemical Detection for the Trace Analysis of TNT in Soil. Sensors, 2015, 15, 17048-17056.	3.8	18
20	Generation of fluorescent silver nanoclusters in reverse micelles using gamma irradiation: low vs. high dosages and spectral evolution with time. Applied Nanoscience (Switzerland), 2015, 5, 411-418.	3.1	0
21	One-step synthesis of a new photoelectron-accepting, n-dopable oligo(pyrazole). Synthetic Metals, 2015, 204, 32-38.	3.9	3
22	Crystal structure ofcatena-poly[[chlorido(4,4′-dimethyl-2,2′-bipyridine-κ2N,N′)copper(II)]-Î⅓-chlorido]. Ac Crystallographica Section E: Crystallographic Communications, 2015, 71, 624-627.	cta 0.5	0
23	Square Wave Voltammetry of TNT at Gold Electrodes Modified with Self-Assembled Monolayers Containing Aromatic Structures. PLoS ONE, 2014, 9, e115966.	2.5	5
24	Surface plasmon resonance promotion of homogeneous catalysis using a gold nanoparticle platform. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	8
25	Probing the Quenching of Quantum Dot Photoluminescence by Peptide-Labeled Ruthenium(II) Complexes. Journal of Physical Chemistry C, 2014, 118, 9239-9250.	3.1	14
26	Attaching high charge density metal ions to surfaces and biomolecules. Reaction chemistry of hypodentate cobalt diamine complexes. Dalton Transactions, 2013, 42, 15617.	3.3	3
27	Generation of fluorescent silver nanoscale particles in reverse micelles using gamma irradiation. Chemical Communications, 2012, 48, 10657.	4.1	9
28	Complex Förster Energy Transfer Interactions between Semiconductor Quantum Dots and a Redox-Active Osmium Assembly. ACS Nano, 2012, 6, 5330-5347.	14.6	55
29	Accelerating the initial rate of hydrolysis of methyl parathion with laser excitation using monolayer protected 10 nm Au nanoparticles capped with a Cu(bpy) catalyst. Chemical Communications, 2012, 48, 4121.	4.1	14
30	Synthesis of a 2,2'-Bipyridyl Functionalized Oligovinylene-Phenylene Using Heck and Horner-Wadsworth-Emmons Reactions and X-ray Crystal Structure of E-(4-(4-Bromostyryl)phenyl)(methyl)sulfane. Molecules, 2012, 17, 5724-5732.	3.8	1
31	Electronic effects on the reactivity of copper mono-bipyridine complexes. Inorganica Chimica Acta, 2012, 388, 168-174.	2.4	6
32	Directional photoinduced electron transfer in paraquat silicate thin films containing entrapped ruthenium(ii)-tris(bathophenanthroline-disulfonate). Chemical Communications, 2011, 47, 11348.	4.1	1
33	Photocurrents from the Direct Irradiation of a Donor–Acceptor Complex Contained in a Thin Film on Indium Tin Oxide. Journal of Physical Chemistry C, 2011, 115, 13446-13461.	3.1	12
34	Structural Reorganizations Control Intermolecular Conductance and Charge Trapping in Paraquatâ€Tetraphenylborate Inverse Photochemical Cell. Photochemistry and Photobiology, 2011, 87, 1024-1030.	2.5	6
35	Electrochemical detection of TNT with in-line pre-concentration using imprinted diethylbenzene-bridged periodic mesoporous organosilicas. Sensors and Actuators B: Chemical, 2011, 155, 737-744.	7.8	26
36	Biosensor UUV payload for underwater detection. Proceedings of SPIE, 2010, , .	0.8	2

#	Article	IF	CITATIONS
37	Quantum-dot/dopamine bioconjugates function as redox coupled assemblies for in vitro and intracellular pH sensing. Nature Materials, 2010, 9, 676-684.	27.5	433
38	Fluorescence-based Sensing of 2,4,6-Trinitrotoluene (TNT) Using a Multi-channeled Poly(methyl) Tj ETQq0 0 0 rgE	BT J.Qverloc	k ₂₂ 0 Tf 50 7
39	Observation of two discrete conductivity states in quinone-oligo(phenylene vinylene). Nanotechnology, 2010, 21, 085704.	2.6	6
40	On the Role of Oxygen in the Formation of Electron Transmission Channels in Oligo(Phenylene) Tj ETQq0 0 0 rgB	Γ /Overlock 3.1	≀ 10 Tf 50 62
41	Molecular conductance switching via controlled alteration of electron delocalization: Quinone-modified oligo(phenylenevinylene). Journal of Vacuum Science & Technology B, 2009, 27, 817.	1.3	5
42	Bio-inspired photo-electronic material based on photosynthetic proteins., 2009,,.		2
43	Synthesis and electrochemistry of self-assembled monolayers containing quinone derivatives with varying electronic conjugation. Journal of Electroanalytical Chemistry, 2009, 628, 125-133.	3.8	26
44	Proton–coupled electron transfer in self-assembled monolayers containing quinone compounds with different bridging groups of varying electronic conjugation. Journal of Electroanalytical Chemistry, 2009, 632, 127-132.	3.8	21
45	Multiplex Charge-Transfer Interactions between Quantum Dots and Peptide-Bridged Ruthenium Complexes. Analytical Chemistry, 2009, 81, 4831-4839.	6.5	70
46	Using metal complex-labeled peptides for charge transfer-based biosensing with semiconductor quantum dots. Proceedings of SPIE, 2009, , .	0.8	0
47	Interactions between Redox Complexes and Semiconductor Quantum Dots Coupled via a Peptide Bridge. Journal of the American Chemical Society, 2008, 130, 16745-16756.	13.7	115
48	Surface Reactivity of the Quinone/Hydroquinone Redox Center Tethered to Gold: Comparison of Delocalized and Saturated Bridges. Journal of the American Chemical Society, 2008, 130, 5579-5585.	13.7	29
49	Selective DNA-Mediated Assembly of Gold Nanoparticles on Electroded Substrates. Langmuir, 2008, 24, 10245-10252.	3.5	9
50	Electrochemically Controlled Conductance Switching in a Single Molecule: Quinone-Modified Oligo(phenylene vinylene). ACS Nano, 2008, 2, 1289-1295.	14.6	60
51	Nanoporous Organosilicas as Preconcentration Materials for the Electrochemical Detection of Trinitrotoluene. Analytical Chemistry, 2008, 80, 4627-4633.	6.5	67
52	Increasing Efficiency of Photoelectronic Conversion by Encapsulation of Photosynthetic Reaction Center Proteins in Arrayed Carbon Nanotube Electrode. Langmuir, 2008, 24, 8871-8876.	3.5	47
53	Electrochemical Detection of 2,4,6-Trinitrotoluene Using Interdigitated Array Electrodes. Analytical Letters, 2008, 41, 2634-2645.	1.8	13
54	New bio-inorganic photo-electronic devices based on photosynthetic proteins. Proceedings of SPIE, 2007, , .	0.8	0

#	Article	IF	Citations
55	Rapid Proton-coupled Electron-transfer of Hydroquinone through Phenylenevinylene Bridges. Langmuir, 2007, 23, 942-948.	3.5	41
56	Effects of Distance and Driving Force on Photoinduced Electron Transfer between Photosynthetic Reaction Centers and Gold Electrodes. Journal of Physical Chemistry C, 2007, 111, 17122-17130.	3.1	49
57	Heterogeneous electron transfer of quinone–hydroquinone in alkaline solutions at gold electrode surfaces: Comparison of saturated and unsaturated bridges. Journal of Electroanalytical Chemistry, 2007, 606, 33-38.	3.8	39
58	New bio-inorganic photo-electronic devices based on photosynthetic proteins., 2006, 6370, 101.		2
59	Electrochemical and ligand binding studies of a de novo heme protein. Biophysical Chemistry, 2006, 123, 102-112.	2.8	20
60	Conductive Wiring of Immobilized Photosynthetic Reaction Center to Electrode by Cytochromec. Journal of the American Chemical Society, 2006, 128, 12044-12045.	13.7	120
61	Effect of protein orientation on electron transfer between photosynthetic reaction centers and carbon electrodes. Biosensors and Bioelectronics, 2006, 21, 1023-1028.	10.1	83
62	Probing Â-coupling in molecular junctions. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8821-8825.	7.1	82
63	Ru2(ap)4($led{l}f$ -oligo(phenyleneethynyl)) Molecular Wires: $led{l}\hat{l}$ Synthesis and Electronic Characterization. Journal of the American Chemical Society, 2005, 127, 10010-10011.	13.7	151
64	Simplified Avidin–Biotin Mediated Antibody Attachment for a Surface Plasmon Resonance Biosensor. Sensor Letters, 2005, 3, 151-156.	0.4	8
65	Electron Conduction across Electrode-Immobilized Neutravidin Bound with Biotin-Labeled Ruthenium Pentaamine. Journal of the American Chemical Society, 2004, 126, 6540-6541.	13.7	5
66	Integration of Photosynthetic Protein Molecular Complexes in Solid-State Electronic Devices. Nano Letters, 2004, 4, 1079-1083.	9.1	354
67	Orientated binding of photosynthetic reaction centers on gold using Niî—,NTA self-assembled monolayers. Biosensors and Bioelectronics, 2004, 19, 1649-1655.	10.1	122
68	Reversible Modulation of Quantum Dot Photoluminescence Using a Protein-Bound Photochromic Fluorescence Resonance Energy Transfer Acceptor. Journal of the American Chemical Society, 2004, 126, 30-31.	13.7	253
69	Modulation of quantum dot photoemission based on fluorescence resonance energy transfer to a photochromic dye acceptor., 2004,,.		1
70	A comparative study of electrochemically and fluorometrically addressed molecular reporter groups: effects of protein microenvironment. Biosensors and Bioelectronics, 2003, 19, 373-382.	10.1	3
71	A reagentless electrochemical biosensor based on a protein scaffoldElectronic supplementary information (ESI) available: details regarding protein engineering and purification. See http://www.rsc.org/suppdata/cc/b2/b209452e/. Chemical Communications, 2003, , 338-339.	4.1	14
72	Kinetics of Absorbed Chromophore Exchange on Metal Oxide Electrodes. Langmuir, 2003, 19, 6081-6087.	3.5	6

#	Article	IF	CITATION
73	A model recognition switch. Electrochemical control and transduction of imidazole binding by electrode-immobilized microperoxidase-11. Chemical Communications, 2002, , 416-417.	4.1	13
74	Synthesis and Characterization of a Ruthenium(II)-Based Redox Conjugate for Reagentless Biosensing. Bioconjugate Chemistry, 2001, 12, 643-647.	3.6	26
75	Molecular Energy Transfer across Oxide Surfaces. Journal of Physical Chemistry B, 2001, 105, 8895-8904.	2.6	32
76	Design of Bioelectronic Interfaces by Exploiting Hinge-Bending Motions in Proteins. Science, 2001, 293, 1641-1644.	12.6	139
77	Sensitization of nanoporous TiO2 electrodes using the naturally occurring chromophores: stentorin and hypericin. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 140, 179-183.	3.9	7
78	Synthesis of 3,5-bis(phosphonomethyl)benzoic acid and its application as a metal oxide surface bivalent anchor. Tetrahedron, 1999, 55, 2835-2846.	1.9	12
79	Sensitization of TiO2 by Phosphonate-Derivatized Proline Assemblies. Inorganic Chemistry, 1999, 38, 3665-3669.	4.0	76
80	A New Electron-Transfer Donor for Photoinduced Electron Transfer in Polypyridyl Molecular Assemblies. Inorganic Chemistry, 1999, 38, 1193-1198.	4.0	15
81	Diffusional Mediation of Surface Electron Transfer on TiO2. Journal of Physical Chemistry B, 1999, 103, 104-107.	2.6	117
82	Mechanisms of Surface Electron Transfer. Proton-Coupled Electron Transfer. Journal of the American Chemical Society, 1998, 120, 13248-13249.	13.7	72
83	Coordination Chemistry and Photoreactivity of the Dinitramide Ion. Inorganic Chemistry, 1996, 35, 1421-1422.	4.0	44
84	Photochemistry of a Structurally Uncomplicated Phenylcarbyne Complex. Inorganic Chemistry, 1995, 34, 2791-2792.	4.0	20