List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/622149/publications.pdf Version: 2024-02-01

		19657	29157
149	11,932	61	104
papers	citations	h-index	g-index
151	151	151	11404
all docs	docs citations	times ranked	citing authors

IONC-MIN LEE

#	Article	IF	CITATIONS
1	Machine learning-assisted optimization of TBBPA-bis-(2,3-dibromopropyl ether) extraction process from ABS polymer. Chemosphere, 2022, 287, 132128.	8.2	6
2	Direct reuse of electronic plastic scraps from computer monitor and keyboard to direct stem cell growth and differentiation. Science of the Total Environment, 2022, 807, 151085.	8.0	7
3	Recent progress on transition metal diselenides from formation and modification to applications. Nanoscale, 2022, 14, 1075-1095.	5.6	21
4	Recent advances in rare-earth-based materials for electrocatalysis. Chem Catalysis, 2022, 2, 967-1008.	6.1	75
5	Interstitial boron-triggered electron-deficient Os aerogels for enhanced pH-universal hydrogen evolution. Nature Communications, 2022, 13, 1143.	12.8	152
6	A Review on the Critical Role of H ₂ Donor in the Selective Hydrogenation of 5â€Hydroxymethylfurfural. ChemSusChem, 2022, 15, .	6.8	12
7	Catalytic pyrolysis of film waste over Co/Ni pillared montmorillonites towards H2 production. Chemosphere, 2022, 299, 134440.	8.2	11
8	Recent Advances in Reductive Upgrading of 5â€Hydroxymethylfurfural via Heterogeneous Thermocatalysis. ChemSusChem, 2022, 15, .	6.8	11
9	Activated recovery of PVC from contaminated waste extension cord-cable using a weak acid. Chemosphere, 2022, 303, 134878.	8.2	7
10	Hierarchically Constructed ZnO/Co ₃ O ₄ Nanoheterostructures Synergizing Dendrite Inhibition and Polysulfide Conversion in Lithium–Sulfur Battery. , 2022, 4, 1358-1367.		14
11	Interface engineering in transition metal-based heterostructures for oxygen electrocatalysis. Materials Chemistry Frontiers, 2021, 5, 1033-1059.	5.9	64
12	Modulation of Single Atomic Co and Fe Sites on Hollow Carbon Nanospheres as Oxygen Electrodes for Rechargeable Zn–Air Batteries. Small Methods, 2021, 5, e2000751.	8.6	178
13	Clarifying the in-situ cytotoxic potential of electronic waste plastics. Chemosphere, 2021, 269, 128719.	8.2	17
14	Grapheneâ€Based Advanced Membrane Applications in Organic Solvent Nanofiltration. Advanced Functional Materials, 2021, 31, 2006949.	14.9	81
15	Metallenes as functional materials in electrocatalysis. Chemical Society Reviews, 2021, 50, 6700-6719.	38.1	253
16	Atomic-thin hexagonal CuCo nanocrystals with d-band tuning for CO ₂ reduction. Journal of Materials Chemistry A, 2021, 9, 7496-7502.	10.3	24
17	On-line spectroscopic study of brominated flame retardant extraction in supercritical CO2. Chemosphere, 2021, 263, 128282.	8.2	10
18	Electrocatalytic dimeric inactivation mechanism by a porphyrinic molecular-type catalyst: integration in a glucose/O ₂ fuel cell. Catalysis Science and Technology, 2021, 11, 1931-1939.	4.1	1

#	Article	IF	CITATIONS
19	Toward Value-Added Dicarboxylic Acids from Biomass Derivatives via Thermocatalytic Conversion. ACS Catalysis, 2021, 11, 2524-2560.	11.2	75
20	<i>ChemElectroChem</i> : Beyond Lithiumâ€lon Batteries. ChemElectroChem, 2021, 8, 1149-1149.	3.4	4
21	Highly Efficient Oxygen Reduction Reaction Activity of Nâ€Đoped Carbon–Cobalt Boride Heterointerfaces. Advanced Energy Materials, 2021, 11, 2100157.	19.5	190
22	Value-added products from thermochemical treatments of contaminated e-waste plastics. Chemosphere, 2021, 269, 129409.	8.2	54
23	Electronic Modulation of Nonâ€van der Waals 2D Electrocatalysts for Efficient Energy Conversion. Advanced Materials, 2021, 33, e2008422.	21.0	190
24	Recent Advances in Electrocatalysts for Alkaline Hydrogen Oxidation Reaction. Small, 2021, 17, e2100391.	10.0	56
25	Selective catalytic reduction of NOx in marine engine exhaust gas over supported transition metal oxide catalysts. Chemical Engineering Journal, 2021, 414, 128794.	12.7	23
26	Ultrathin CuNi Nanosheets for CO ₂ Reduction and O ₂ Reduction Reaction in Fuel Cells. , 2021, 3, 1143-1150.		23
27	Gd-induced electronic structure engineering of a NiFe-layered double hydroxide for efficient oxygen evolution. Journal of Materials Chemistry A, 2021, 9, 2999-3006.	10.3	133
28	Transition metal nitrides for electrochemical energy applications. Chemical Society Reviews, 2021, 50, 1354-1390.	38.1	580
29	Heterostructure-Induced Light Absorption and Charge-Transfer Optimization of a TiO ₂ Photoanode for Photoelectrochemical Water Splitting. ACS Applied Energy Materials, 2021, 4, 14440-14446.	5.1	12
30	Reduced graphene oxide with controllably intimate bifunctionality for the catalytic transformation of fructose into 2,5-diformylfuran in biphasic solvent systems. Chemical Engineering Journal, 2020, 379, 122284.	12.7	33
31	Hydrogels for Medical and Environmental Applications. Small Methods, 2020, 4, 1900735.	8.6	71
32	Recent Progress of Metal Carbides Encapsulated in Carbonâ€Based Materials for Electrocatalysis of Oxygen Reduction Reaction. Small Methods, 2020, 4, 1900575.	8.6	59
33	Electrochemical Conversion of Biomass Derived Products into High-Value Chemicals. Matter, 2020, 3, 1162-1177.	10.0	63
34	A Reactive Template Synthesis of Hierarchical Porous Carbon and Its Application to Supercapacitor Electrodes. Macromolecular Materials and Engineering, 2020, 305, 2000168.	3.6	8
35	Coâ€Induced Electronic Optimization of Hierarchical NiFe LDH for Oxygen Evolution. Small, 2020, 16, e2002426.	10.0	263
36	A hydrogen/oxygen hybrid biofuel cell comprising an electrocatalytically active nanoflower/laccase-based biocathode. Catalysis Science and Technology, 2020, 10, 6235-6243.	4.1	8

#	Article	IF	CITATIONS
37	Atomically Dispersed CoN ₄ /B, N-C Nanotubes Boost Oxygen Reduction in Rechargeable Zn–Air Batteries. ACS Applied Energy Materials, 2020, 3, 4539-4548.	5.1	53
38	Recent advances in structural engineering of MXene electrocatalysts. Journal of Materials Chemistry A, 2020, 8, 10604-10624.	10.3	201
39	The influence of cations intercalated in graphene oxide membranes in tuning H2/CO2 separation performance. Separation and Purification Technology, 2020, 246, 116933.	7.9	29
40	Bifunctional carbon nanoplatelets as metal-free catalysts for direct conversion of fructose to 2,5-diformylfuran. Catalysis Science and Technology, 2020, 10, 4179-4183.	4.1	33
41	Confined growth of pyridinic N–Mo ₂ C sites on MXenes for hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 7109-7116.	10.3	148
42	Heterostructured Catalysts for Electrocatalytic and Photocatalytic Carbon Dioxide Reduction. Advanced Functional Materials, 2020, 30, 1910768.	14.9	227
43	Design Strategies for Development of TMD-Based Heterostructures in Electrochemical Energy Systems. Matter, 2020, 2, 526-553.	10.0	312
44	Trimetallic Au@PdPb nanowires for oxygen reduction reaction. Nano Research, 2020, 13, 2691-2696.	10.4	39
45	Conductive graphene-based E-textile for highly sensitive, breathable, and water-resistant multimodal gesture-distinguishable sensors. Journal of Materials Chemistry A, 2020, 8, 14778-14787.	10.3	38
46	Extracellular protein isolation from the matrix of anammox biofilm using ionic liquid extraction. Applied Microbiology and Biotechnology, 2020, 104, 3643-3654.	3.6	13
47	Self-Supported Fe–N–C Electrocatalyst via Pyrolysis of EDTAFeNa Adsorbed on SBA-15 for the Oxygen Reduction Reaction. Industrial & Engineering Chemistry Research, 2020, 59, 3016-3023.	3.7	4
48	Embedded PdFe@N-carbon nanoframes for oxygen reduction in acidic fuel cells. Carbon, 2020, 164, 369-377.	10.3	43
49	B, N-doped ultrathin carbon nanosheet superstructure for high-performance oxygen reduction reaction in rechargeable zinc-air battery. Carbon, 2020, 164, 398-406.	10.3	96
50	Linkage Effect in the Heterogenization of Cobalt Complexes by Doped Graphene for Electrocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2019, 58, 13532-13539.	13.8	143
51	Linkage Effect in the Heterogenization of Cobalt Complexes by Doped Graphene for Electrocatalytic CO ₂ Reduction. Angewandte Chemie, 2019, 131, 13666-13673.	2.0	24
52	Surface-Modified Hollow Ternary NiCo ₂ P _{<i>x</i>} Catalysts for Efficient Electrochemical Water Splitting and Energy Storage. ACS Applied Materials & Interfaces, 2019, 11, 39798-39808.	8.0	21
53	Sub-5 nm palladium nanoparticles <i>in situ</i> embedded in N-doped carbon nanoframes: facile synthesis, excellent sinter resistance and electrocatalytic properties. Journal of Materials Chemistry A, 2019, 7, 26243-26249.	10.3	40
54	Structural and Electronic Optimization of MoS ₂ Edges for Hydrogen Evolution. Journal of the American Chemical Society, 2019, 141, 18578-18584.	13.7	292

#	Article	IF	CITATIONS
55	Cu ₅ Pt Dodecahedra with Low-Pt Content: Facile Synthesis and Outstanding Formic Acid Electrooxidation. ACS Applied Materials & Interfaces, 2019, 11, 34869-34877.	8.0	43
56	Porous PdRh nanobowls: facile synthesis and activity for alkaline ethanol oxidation. Nanoscale, 2019, 11, 2974-2980.	5.6	62
57	Carbon-based hydrogels: synthesis and their recent energy applications. Journal of Materials Chemistry A, 2019, 7, 15491-15518.	10.3	124
58	Tailoring of Metal Boride Morphology via Anion for Efficient Water Oxidation. Advanced Energy Materials, 2019, 9, 1901503.	19.5	79
59	Hierarchically Porous Co/Co <i>_x</i> M <i>_y</i> (M = P, N) as an Efficient Mott–Schottky Electrocatalyst for Oxygen Evolution in Rechargeable Zn–Air Batteries. Small, 2019, 15, e1901518.	10.0	163
60	Superior Oxygen Electrocatalysis on Nickel Indium Thiospinels for Rechargeable Zn–Air Batteries. , 2019, 1, 123-131.		199
61	Recent Trends, Benchmarking, and Challenges of Electrochemical Reduction of CO ₂ by Molecular Catalysts. Advanced Energy Materials, 2019, 9, 1900090.	19.5	144
62	Nitrogen-Doped Carbon-Encapsulated Antimony Sulfide Nanowires Enable High Rate Capability and Cyclic Stability for Sodium-Ion Batteries. ACS Applied Nano Materials, 2019, 2, 1457-1465.	5.0	40
63	Hydrogenase-Like Electrocatalytic Activation and Inactivation Mechanism by Three-Dimensional Binderless Molecular Catalyst. ACS Applied Energy Materials, 2019, 2, 3352-3362.	5.1	3
64	Ternary metal sulfides for electrocatalytic energy conversion. Journal of Materials Chemistry A, 2019, 7, 9386-9405.	10.3	225
65	Bimetal/Metal Oxide Encapsulated in Graphitic Nitrogen Doped Mesoporous Carbon Networks for Enhanced Oxygen Electrocatalysis. ChemElectroChem, 2019, 6, 1485-1491.	3.4	22
66	Alveolate porous carbon aerogels supported Co9S8 derived from a novel hybrid hydrogel for bifunctional oxygen electrocatalysis. Carbon, 2019, 144, 557-566.	10.3	177
67	A heterostructure of layered double hydroxide wrapped in few-layer carbon with iridium doping for efficient oxygen evolution. Electrochimica Acta, 2019, 296, 590-597.	5.2	16
68	Three-Dimensional Graphene-Supported Ni ₃ Fe/Co ₉ S ₈ Composites: Rational Design and Active for Oxygen Reversible Electrocatalysis. ACS Applied Materials & Interfaces, 2019, 11, 4028-4036.	8.0	79
69	3D Robust Carbon Aerogels Immobilized with Pd ₃ Pb Nanoparticles for Oxygen Reduction Catalysis. ACS Applied Nano Materials, 2018, 1, 1904-1911.	5.0	29
70	Recent Advances in Carbonâ€Based Bifunctional Oxygen Electrocatalysts for Znâ^'Air Batteries. ChemElectroChem, 2018, 5, 1424-1434.	3.4	129
71	Tuning the Electronic Spin State of Catalysts by Strain Control for Highly Efficient Water Electrolysis. Small Methods, 2018, 2, 1800001.	8.6	70
72	MOF-derived nickel and cobalt metal nanoparticles in a N-doped coral shaped carbon matrix of coconut leaf sheath origin for high performance supercapacitors and OER catalysis. Electrochimica Acta, 2018, 265, 336-347.	5.2	64

#	Article	IF	CITATIONS
73	Facile Synthesis of Porous Pd ₃ Pt Halfâ€Shells with Rich "Active Sites―as Efficient Catalysts for Formic Acid Oxidation. Small, 2018, 14, e1703940.	10.0	92
74	Enhanced electrochemical performance of lithium ion batteries using Sb ₂ S ₃ nanorods wrapped in graphene nanosheets as anode materials. Nanoscale, 2018, 10, 3159-3165.	5.6	65
75	Bifunctional Sulfonated MoO ₃ –ZrO ₂ Binary Oxide Catalysts for the One-Step Synthesis of 2,5-Diformylfuran from Fructose. ACS Sustainable Chemistry and Engineering, 2018, 6, 2976-2982.	6.7	57
76	Conventional and New Materials for Selective Catalytic Reduction (SCR) of NO _{<i>x</i>} . ChemCatChem, 2018, 10, 1499-1511.	3.7	83
77	Boosting Bifunctional Oxygen Electrocatalysis with 3D Graphene Aerogel‣upported Ni/MnO Particles. Advanced Materials, 2018, 30, 1704609.	21.0	547
78	A Coconut Leaf Sheath Derived Graphitized Nâ€Doped Carbon Network for Highâ€Performance Supercapacitors. ChemElectroChem, 2018, 5, 284-291.	3.4	14
79	MoO ₃ -Containing Protonated Nitrogen Doped Carbon as a Bifunctional Catalyst for One-Step Synthesis of 2,5-Diformylfuran from Fructose. ACS Sustainable Chemistry and Engineering, 2018, 6, 284-291.	6.7	48
80	Robust N-doped carbon aerogels strongly coupled with iron–cobalt particles as efficient bifunctional catalysts for rechargeable Zn–air batteries. Nanoscale, 2018, 10, 19937-19944.	5.6	144
81	Vanadium-embedded mesoporous carbon microspheres as effective catalysts for selective aerobic oxidation of 5-hydroxymethyl-2-furfural into 2, 5-diformylfuran. Applied Catalysis A: General, 2018, 568, 16-22.	4.3	46
82	Exploring Indiumâ€Based Ternary Thiospinel as Conceivable Highâ€Potential Air athode for Rechargeable Zn–Air Batteries. Advanced Energy Materials, 2018, 8, 1802263.	19.5	248
83	Core–shell CuPd@Pd tetrahedra with concave structures and Pd-enriched surface boost formic acid oxidation. Journal of Materials Chemistry A, 2018, 6, 10632-10638.	10.3	75
84	Fabricating 3D Macroscopic Graphene-Based Architectures with Outstanding Flexibility by the Novel Liquid Drop/Colloid Flocculation Approach for Energy Storage Applications. ACS Applied Materials & Interfaces, 2018, 10, 21991-22001.	8.0	12
85	Design and Integration of Molecularâ€īype Catalysts in Fuelâ€Cell Technology. Small Methods, 2018, 2, 1800059.	8.6	9
86	Robust bifunctional oxygen electrocatalyst with a "rigid and flexible―structure for air-cathodes. NPG Asia Materials, 2018, 10, 618-629.	7.9	83
87	Hierarchical self-assembled Bi ₂ S ₃ hollow nanotubes coated with sulfur-doped amorphous carbon as advanced anode materials for lithium ion batteries. Nanoscale, 2018, 10, 13343-13350.	5.6	67
88	Coupling orientation and mediation strategies for efficient electron transfer in hybrid biofuel cells. Nature Energy, 2018, 3, 574-581.	39.5	50
89	Ultra-small and low crystalline CoMoO ₄ nanorods for electrochemical capacitors. Sustainable Energy and Fuels, 2017, 1, 324-335.	4.9	50
90	MOFâ€Đerived Hollow Cage Ni <i>_x</i> Co _{3â^²} <i>_x</i> O ₄ and Their Synergy with Graphene for Outstanding Supercapacitors. Small, 2017, 13, 1603102.	10.0	228

#	Article	IF	CITATIONS
91	Synthesis of Porous Pd Nanostructure and Its Application in Enzyme-Free Sensor of Hydrogen Peroxide. ACS Sustainable Chemistry and Engineering, 2017, 5, 1248-1252.	6.7	26
92	Effects of electrostatic interaction on the properties of ionic liquids correlated with the change of free volume. Physical Chemistry Chemical Physics, 2017, 19, 5389-5395.	2.8	10
93	Nanobelt-arrayed vanadium oxide hierarchical microspheres as catalysts for selective oxidation of 5-hydroxymethylfurfural toward 2,5-diformylfuran. Applied Catalysis B: Environmental, 2017, 207, 358-365.	20.2	67
94	Small Size Rh Nanoparticles in Micelle Nanostructure by Ionic Liquid/CTAB for Acceptorless Dehydrogenation of Alcohols Only in Pure Water. ACS Sustainable Chemistry and Engineering, 2017, 5, 2056-2060.	6.7	13
95	Construction of 3D CoO Quantum Dots/Graphene Hydrogels as Binder-Free Electrodes for Ultra-high Rate Energy Storage Applications. Electrochimica Acta, 2017, 243, 152-161.	5.2	32
96	Molecular porphyrinic freestanding buckypaper electrodes from carbon nanotubes for glucose fuel cells. Journal of Materials Chemistry A, 2017, 5, 8927-8932.	10.3	21
97	<i>In situ</i> bubble template-assisted synthesis of phosphonate-functionalized Rh nanodendrites and their catalytic application. CrystEngComm, 2017, 19, 2946-2952.	2.6	10
98	Hierarchical Gadolinium Oxide Microspheres for Enzymeless Electroâ€biosensors in Hydrogen Peroxide Dynamic Detection. ChemElectroChem, 2017, 4, 272-277.	3.4	8
99	3D ordered porous Mo _x C (x = 1 or 2) for advanced hydrogen evolution and Li storage. Nanoscale, 2017, 9, 7260-7267.	5.6	58
100	Two-Dimensional Cobalt/N-Doped Carbon Hybrid Structure Derived from Metal–Organic Frameworks as Efficient Electrocatalysts for Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2017, 5, 5646-5650.	6.7	50
101	Polymer-assisted formation of 3D Pd nanoassemblies: highly active catalysts for formic acid electrooxidation. Sustainable Energy and Fuels, 2017, 1, 450-457.	4.9	6
102	Crâ€MILâ€101â€Encapsulated Keggin Phosphomolybdic Acid as a Catalyst for the Oneâ€Pot Synthesis of 2,5â€Diformylfuran from Fructose. ChemCatChem, 2017, 9, 1187-1191.	3.7	42
103	Polyallylamine-Functionalized Platinum Tripods: Enhancement of Hydrogen Evolution Reaction by Proton Carriers. ACS Catalysis, 2017, 7, 452-458.	11.2	142
104	Polyethyleneimine functionalized platinum superstructures: enhancing hydrogen evolution performance by morphological and interfacial control. Chemical Science, 2017, 8, 8411-8418.	7.4	116
105	Heterojunctionâ€Assisted Co ₃ S ₄ @Co ₃ O ₄ Core–Shell Octahedrons for Supercapacitors and Both Oxygen and Carbon Dioxide Reduction Reactions. Small, 2017, 13, 1701724.	10.0	90
106	A Microribbon Hybrid Structure of CoOxâ€MoC Encapsulated in Nâ€Doped Carbon Nanowire Derived from MOF as Efficient Oxygen Evolution Electrocatalysts. Small, 2017, 13, 1702753.	10.0	69
107	Preparation of Mesoporous Dysprosium Oxide for Dynamic Hydrogen Peroxide Detection without Enzymes. ChemElectroChem, 2017, 4, 96-101.	3.4	7
108	Hydrothermally driven three-dimensional evolution of mesoporous hierarchical europium oxide hydrangea microspheres for non-enzymatic sensors of hydrogen peroxide detection. Environmental Science: Nano, 2016, 3, 701-706.	4.3	15

#	Article	IF	CITATIONS
109	Morphological and Interfacial Control of Platinum Nanostructures for Electrocatalytic Oxygen Reduction. ACS Catalysis, 2016, 6, 5260-5267.	11.2	117
110	Catalytic activities for methanol oxidation on ultrathin CuPt ₃ wavy nanowires with/without smart polymer. Chemical Science, 2016, 7, 5414-5420.	7.4	71
111	Synthesis of 3D mesoporous samarium oxide hydrangea microspheres for enzyme-free sensor of hydrogen peroxide. Electrochimica Acta, 2016, 208, 231-237.	5.2	25
112	The facile ionic liquid-assisted synthesis of hollow and porous platinum nanotubes with enhanced catalytic performances. RSC Advances, 2016, 6, 67290-67294.	3.6	5
113	A Facile Selfâ€Templated Approach for the Synthesis of Pt Hollow Nanospheres with Enhanced Electrocatalytic Activity. Advanced Materials Interfaces, 2016, 3, 1600563.	3.7	8
114	Hollow silica nanostructures with small size Au nanoparticles for catalytic applications. RSC Advances, 2016, 6, 89057-89060.	3.6	1
115	One-Pot Fabrication of Hollow and Porous Pd–Cu Alloy Nanospheres and Their Remarkably Improved Catalytic Performance for Hexavalent Chromium Reduction. ACS Applied Materials & Interfaces, 2016, 8, 30948-30955.	8.0	82
116	Controlled Synthesis of 3D Nanoplateâ€Assembled La ₂ O ₃ Hierarchical Microspheres for Enzymeâ€Free Detection of Hydrogen Peroxide. Advanced Materials Interfaces, 2016, 3, 1500833.	3.7	8
117	Ni(OH) ₂ Nanoflowers/Graphene Hydrogels: A New Assembly for Supercapacitors. ACS Sustainable Chemistry and Engineering, 2016, 4, 3736-3742.	6.7	93
118	High performance asymmetric supercapacitors: New NiOOH nanosheet/graphene hydrogels and pure graphene hydrogels. Nano Energy, 2016, 19, 210-221.	16.0	288
119	Self-assembly synthesis of reduced graphene oxide-supported platinum nanowire composites with enhanced electrocatalytic activity towards the hydrazine oxidation reaction. Catalysis Science and Technology, 2016, 6, 3143-3148.	4.1	10
120	3D Graphene Hollow Nanospheres@Palladiumâ€Networks as an Efficient Electrocatalyst for Formic Acid Oxidation. Advanced Materials Interfaces, 2015, 2, 1500321.	3.7	35
121	Thermal decomposition synthesis of functionalized PdPt alloy nanodendrites with high selectivity for oxygen reduction reaction. NPG Asia Materials, 2015, 7, e219-e219.	7.9	59
122	Graphene/acid assisted facile synthesis of structure-tuned Fe3O4 and graphene composites as anode materials for lithium ion batteries. Carbon, 2015, 86, 310-317.	10.3	61
123	Trimetallic PtAgCu@PtCu core@shell concave nanooctahedrons with enhanced activity for formic acid oxidation reaction. Nano Energy, 2015, 12, 824-832.	16.0	126
124	Solvent optimization for bacterial extracellular matrices: a solution for the insoluble. RSC Advances, 2015, 5, 7469-7478.	3.6	10
125	Polyanilineâ€Coated Hollow Fe ₂ O ₃ Nanoellipsoids as an Anode Material for Highâ€Performance Lithiumâ€Ion Batteries. ChemElectroChem, 2015, 2, 503-507.	3.4	22
126	Polyethyleneimine-assisted synthesis of high-quality platinum/graphene hybrids: the effect of molecular weight on electrochemical properties. Journal of Materials Chemistry A, 2015, 3, 12000-12004.	10.3	28

#	Article	IF	CITATIONS
127	Green and facile synthesis of Fe ₃ O ₄ and graphene nanocomposites with enhanced rate capability and cycling stability for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 16206-16212.	10.3	50
128	Facile Synthesis of Hollow Mesoporous CoFe ₂ O ₄ Nanospheres and Graphene Composites as Highâ€Performance Anode Materials for Lithiumâ€Ion Batteries. ChemElectroChem, 2015, 2, 1010-1018.	3.4	45
129	Oneâ€&tep Electrodeposition of Polyallylamineâ€Functionalized Gold Nanodendrites and Their Application in Sensing. ChemPlusChem, 2015, 80, 1148-1152.	2.8	4
130	Novel graphene/polyaniline/MnO _x 3D-hydrogels obtained by controlled morphology of MnO _x in the graphene/polyaniline matrix for high performance binder-free supercapacitor electrodes. RSC Advances, 2015, 5, 94388-94396.	3.6	36
131	Hollow and porous palladium nanocrystals: synthesis and electrocatalytic application. Journal of Materials Chemistry A, 2015, 3, 21995-21999.	10.3	31
132	Synthesis of CNT@Fe3O4-C hybrid nanocables as anode materials with enhanced electrochemical performance for lithium ion batteries. Electrochimica Acta, 2015, 176, 1332-1337.	5.2	61
133	Halideâ€Ionâ€Assisted Synthesis of Different αâ€Fe ₂ O ₃ Hollow Structures and Their Lithiumâ€Ion Storage Properties. ChemPlusChem, 2015, 80, 522-528.	2.8	14
134	Three-Dimensional Cobalt Oxide Microstructures with Brush-like Morphology via Surfactant-Dependent Assembly. ACS Applied Materials & Interfaces, 2014, 6, 20729-20737.	8.0	41
135	Influence of organic solvent on the separation of an ionic liquid from a lignin–ionic liquid mixture. Bioresource Technology, 2014, 156, 404-407.	9.6	23
136	A review on the electrochemical reduction of CO2 in fuel cells, metal electrodes and molecular catalysts. Catalysis Today, 2014, 233, 169-180.	4.4	392
137	Novel synthesis of high performance anode materials for lithium-ion batteries (LIBs). Journal of Materials Chemistry A, 2014, 2, 1589-1626.	10.3	116
138	Facile synthesis of corallite-like Pt–Pd alloy nanostructures and their enhanced catalytic activity and stability for ethanol oxidation. Journal of Materials Chemistry A, 2014, 2, 13840.	10.3	81
139	Graphene/NiO Nanowires: Controllable One-Pot Synthesis and Enhanced Pseudocapacitive Behavior. ACS Applied Materials & Interfaces, 2014, 6, 8246-8256.	8.0	106
140	Effects of solubility properties of solvents and biomass on biomass pretreatment. Bioresource Technology, 2014, 170, 160-166.	9.6	17
141	Oneâ€Pot Transformation of Cellobiose to Formic Acid and Levulinic Acid over Ionicâ€Liquidâ€based Polyoxometalate Hybrids. ChemSusChem, 2014, 7, 2670-2677.	6.8	52
142	Recyclability of an ionic liquid for biomass pretreatment. Bioresource Technology, 2014, 169, 336-343.	9.6	79
143	Effect of Organic Solvent in Ionic Liquid on Biomass Pretreatment. ACS Sustainable Chemistry and Engineering, 2013, 1, 894-902.	6.7	71
144	Graphene for supercapacitor applications. Journal of Materials Chemistry A, 2013, 1, 14814.	10.3	453

#	Article	IF	CITATIONS
145	Pd catalyst supported on a chitosan-functionalized large-area 3D reduced graphene oxide for formic acid electrooxidation reaction. Journal of Materials Chemistry A, 2013, 1, 6839.	10.3	47
146	Estimation of the free energy of hard-sphere crystals via a free-volume approach. Molecular Simulation, 2012, 38, 16-22.	2.0	6
147	Fabrication of a mesoporous Co(OH)2/ITO nanowire composite electrode and its application in supercapacitors. RSC Advances, 2012, 2, 10512.	3.6	24
148	What causes the low viscosity of ether-functionalized ionic liquids? Its dependence on the increase of free volume. RSC Advances, 2012, 2, 10564.	3.6	106
149	Improvement of biomass properties by pretreatment with ionic liquids for bioconversion process. Bioresource Technology, 2012, 111, 453-459.	9.6	109