Evgeny Apfelbaum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6219807/publications.pdf Version: 2024-02-01

EVCENY ADEEL BALLM

#	Article	IF	CITATIONS
1	A New Similarity between the Critical and Zeno-line Parameters. Ukrainian Journal of Physics, 2022, 56, 838.	0.2	4
2	The Line of Ideal Isothermal Compressibility. Journal of Physical Chemistry B, 2022, 126, 2912-2920.	2.6	2
3	Modified Virial Expansion and the Equation of State. Russian Journal of Mathematical Physics, 2021, 28, 147-155.	1.5	5
4	The ideal lines on the phase diagrams of liquids in 2D space. Journal of Molecular Liquids, 2021, 334, 116088.	4.9	4
5	Systematization of the Critical Parameters of Substances due to Their Connection with Heat of Evaporation and Boyle Temperature. International Journal of Thermophysics, 2020, 41, 1.	2.1	14
6	The Line of the Unit Compressibility Factor (Zeno-Line) for Crystal States. Journal of Physical Chemistry B, 2020, 124, 5021-5027.	2.6	8
7	The calculations of thermophysical properties of low-temperature gallium plasma. Physics of Plasmas, 2020, 27, .	1.9	6
8	The thermophysical properties of lowâ€ŧemperature Pb plasma. Contributions To Plasma Physics, 2019, 59, e201800148.	1.1	5
9	The Zeno line and binodal for Ga. Journal of Molecular Liquids, 2018, 263, 237-242.	4.9	8
10	Deviations from the Wiedemann‒Franz Law in Partially Ionized Metal Plasma. High Temperature, 2018, 56, 609-612.	1.0	5
11	The calculations of thermophysical properties of low-temperature carbon plasma. Physics of Plasmas, 2018, 25, .	1.9	6
12	The calculations of thermophysical properties of molybdenum plasma. Physics of Plasmas, 2017, 24, 052702.	1.9	14
13	Calculation of thermophysical properties of titanium and zinc plasmas. High Temperature, 2017, 55, 1-11.	1.0	15
14	The pressure, internal energy, and conductivity of tantalum plasma. Contributions To Plasma Physics, 2017, 57, 479-485.	1.1	7
15	Similarity Laws for the Lines of Ideal Free Energy and Chemical Potential in Supercritical Fluids. Journal of Physical Chemistry B, 2017, 121, 8802-8808.	2.6	8
16	The application of the Zeno line similarities to alkaline earth metals. Journal of Molecular Liquids, 2017, 235, 149-154.	4.9	9
17	The Zeno Line for Al, Cu, and U. Journal of Physical Chemistry B, 2016, 120, 4828-4833.	2.6	27
18	The generalized scaling laws based on some deductions from the van der Waals equation. High Temperature, 2016, 54, 175-185.	1.0	20

Evgeny Apfelbaum

#	Article	IF	CITATIONS
19	The Thermophysical Properties of Iron Plasma. Contributions To Plasma Physics, 2016, 56, 176-186.	1.1	15
20	The calculation of thermophysical properties of nickel plasma. Physics of Plasmas, 2015, 22, .	1.9	20
21	The Similarity Relations Set on the Basis of Symmetrization of the Liquid–Vapor Phase Diagram. Journal of Physical Chemistry B, 2015, 119, 8419-8424.	2.6	20
22	The Wide-Range Method to Construct the Entire Coexistence Liquid–Gas Curve and to Determine the Critical Parameters of Metals. Journal of Physical Chemistry B, 2015, 119, 11825-11832.	2.6	31
23	The saturation pressure for different objects in reduced variables and the justification of some empirical relations set from the van der Waals equation. Chemical Physics Letters, 2014, 591, 212-215.	2.6	6
24	The Similarity Law for the Joule–Thomson Inversion Line. Journal of Physical Chemistry B, 2014, 118, 12239-12242.	2.6	9
25	Note: The universal relations for the critical point parameters. Journal of Chemical Physics, 2013, 139, 046101.	3.0	9
26	The Electron Transport Coefficients of Boron and Silicon Plasma. Contributions To Plasma Physics, 2013, 53, 317-325.	1.1	20
27	Regarding the Universality of Some Consequences of the van der Waals Equation in the Supercritical Domain. Journal of Physical Chemistry B, 2013, 117, 7750-7755.	2.6	26
28	Estimate of Beryllium Critical Point on the Basis of Correspondence between the Critical and the Zeno-Line Parameters. Journal of Physical Chemistry B, 2012, 116, 14660-14666.	2.6	25
29	A wide-range model for simulation of pump-probe experiments with metals. Applied Surface Science, 2012, 258, 9480-9483.	6.1	75
30	Dielectric catastrophe and insulator-conductor transition. Europhysics Letters, 2012, 97, 15004.	2.0	1
31	Calculations of Electrical Conductivity of Ag and Au Plasma. Contributions To Plasma Physics, 2012, 52, 41-44.	1.1	11
32	Connection between the Isobaric Thermal Expansion Coefficient with the Zeno-Line and Critical-Point Parameters for Liquids. Journal of Physical Chemistry B, 2011, 115, 10049-10053.	2.6	6
33	The calculation of vapor-liquid coexistence curve of Morse fluid: Application to iron. Journal of Chemical Physics, 2011, 134, 194506.	3.0	17
34	Calculation of electronic transport coefficients of Ag and Au plasma. Physical Review E, 2011, 84, 066403.	2.1	27
35	The Calculations of Ar and Xe Conductivity Under High Pressures. Contributions To Plasma Physics, 2011, 51, 395-400.	1.1	15
36	Correspondence between Thermodynamics of Lattice Models and Real Substances at the Liquidâ^'Gas Domain of the Phase Diagram. Journal of Physical Chemistry B, 2010, 114, 9820-9826.	2.6	12

Evgeny Apfelbaum

#	Article	IF	CITATIONS
37	The calculation of Cs and Rb conductivities in the region of liquid–plasma transition. Physics and Chemistry of Liquids, 2010, 48, 534-545.	1.2	22
38	The interaction potential reconstruction in the dusty plasma and the influence of the trap. Journal of Physics A: Mathematical and Theoretical, 2009, 42, 214024.	2.1	1
39	Altitude and formation conditions of noctilucent clouds in the Earth atmosphere. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 764-768.	2.1	0
40	On the determination of the particle interaction potential in a dusty plasma from a pair correlation function. JETP Letters, 2009, 90, 332-335.	1.4	6
41	The predictions of the critical point parameters for Al, Cu and W found from the correspondence between the critical point and unit compressibility line (Zeno line) positions. Chemical Physics Letters, 2009, 467, 318-322.	2.6	28
42	Correspondence between the Critical and the Zeno-Line Parameters for Classical and Quantum Liquids. Journal of Physical Chemistry B, 2009, 113, 3521-3526.	2.6	80
43	The confirmation of the critical point-Zeno-line similarity set from the numerical modeling data for different interatomic potentials. Journal of Chemical Physics, 2009, 130, 214111.	3.0	53
44	A New Similarity Found from the Correspondence of the Critical and Zeno-Line Parameters. Journal of Physical Chemistry B, 2008, 112, 13064-13069.	2.6	30
45	Regarding the Theory of the Zeno Line. Journal of Physical Chemistry A, 2008, 112, 6042-6044.	2.5	22
46	Regarding convergence curve of virial expansion for the Lennard-Jones system. Journal of Chemical Physics, 2007, 127, 064507.	3.0	15
47	The reconstruction of the effective interaction potential on the base of pair correlation function measurements in dusty plasma. Physics of Plasmas, 2007, 14, 123703.	1.9	7
48	The calculation of electronic transport coefficients of metals in the process of transition from liquid to plasma. Journal of Physics A, 2006, 39, 4407-4410.	1.6	20
49	Triangle of Liquidâ^'Gas States. Journal of Physical Chemistry B, 2006, 110, 8474-8480.	2.6	45
50	Universal triangle of states for liquid and vapor. Journal of Structural Chemistry, 2006, 47, S109-S118.	1.0	2
51	The calculation of the metal transport coefficients in warm dense matter. European Physical Journal D, 2006, 56, B618-B623.	0.4	7
52	The unit compressibility factor and critical parameters of mercury. Chemical Physics Letters, 2005, 413, 342-345.	2.6	23
53	Virial Expansion Providing of the Linearity for a Unit Compressibility Factor. Journal of Physical Chemistry A, 2004, 108, 10381-10385.	2.5	17
54	One model of electric conduction and electric field distributions in a liquid insulator. Journal of Electrostatics, 2001, 50, 129-142.	1.9	11

#	Article	IF	CITATIONS
55	Calculation of transport coefficients with allowance for the chemical composition of a low-temperature high-density metal plasma. Plasma Physics Reports, 2001, 27, 76-81.	0.9	5
56	The model of conduction and electric field distribution in the liquid isolator. , 0, , .		0
57	Calculations of the thermophysical properties of lowâ€ŧemperature Pb plasma at low densities. Contributions To Plasma Physics, 0, , e202100063.	1.1	4

EVGENY APFELBAUM