Frank J Gonzalez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6219094/publications.pdf

Version: 2024-02-01

397 papers 46,069 citations

113 h-index 197 g-index

405 all docs 405 docs citations

405 times ranked 41725 citing authors

#	Article	IF	CITATIONS
1	Targeted Disruption of the Nuclear Receptor FXR/BAR Impairs Bile Acid and Lipid Homeostasis. Cell, 2000, 102, 731-744.	13.5	1,604
2	Peroxisome proliferator–activated receptor α mediates the adaptive response to fasting. Journal of Clinical Investigation, 1999, 103, 1489-1498.	3.9	1,423
3	Role of Aryl Hydrocarbon Receptor-mediated Induction of the CYP1 Enzymes in Environmental Toxicity and Cancer. Journal of Biological Chemistry, 2004, 279, 23847-23850.	1.6	1,018
4	Hepatocyte Nuclear Factor $4\hat{l}\pm$ (Nuclear Receptor 2A1) Is Essential for Maintenance of Hepatic Gene Expression and Lipid Homeostasis. Molecular and Cellular Biology, 2001, 21, 1393-1403.	1.1	998
5	International Union of Pharmacology. LXI. Peroxisome Proliferator-Activated Receptors. Pharmacological Reviews, 2006, 58, 726-741.	7.1	869
6	Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1006-1011.	3.3	806
7	Altered Constitutive Expression of Fatty Acid-metabolizing Enzymes in Mice Lacking the Peroxisome Proliferator-activated Receptor α (PPARα). Journal of Biological Chemistry, 1998, 273, 5678-5684.	1.6	777
8	Aryl-hydrocarbon Receptor-Deficient Mice Are Resistant to 2,3,7,8-Tetrachlorodibenzo-p-dioxin-Induced Toxicity. Toxicology and Applied Pharmacology, 1996, 140, 173-179.	1.3	762
9	Liver Peroxisome Proliferator-activated Receptor Î ³ Contributes to Hepatic Steatosis, Triglyceride Clearance, and Regulation of Body Fat Mass. Journal of Biological Chemistry, 2003, 278, 34268-34276.	1.6	672
10	Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nature Medicine, 2018, 24, 1919-1929.	15.2	632
11	Role of CYP2E1 in the Hepatotoxicity of Acetaminophen. Journal of Biological Chemistry, 1996, 271, 12063-12067.	1.6	557
12	Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nature Communications, 2013, 4, 2384.	5.8	549
13	Regulation of hepatic fasting response by PPARÂ coactivator-1Â (PGC-1): Requirement for hepatocyte nuclear factor 4Â in gluconeogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4012-4017.	3.3	522
14	Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease. Journal of Clinical Investigation, 2015, 125, 386-402.	3.9	517
15	Thermogenic Activation Induces FGF21 Expression and Release in Brown Adipose Tissue. Journal of Biological Chemistry, 2011, 286, 12983-12990.	1.6	512
16	cDNA cloning, chromosomal mapping, and functional characterization of the human peroxisome proliferator activated receptor. Biochemistry, 1993, 32, 5598-5604.	1.2	499
17	A Natural Product That Lowers Cholesterol As an Antagonist Ligand for FXR. Science, 2002, 296, 1703-1706.	6.0	491
18	Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine. Journal of Lipid Research, 2007, 48, 2664-2672.	2.0	473

#	Article	IF	CITATIONS
19	The Farnesoid X Receptor Modulates Adiposity and Peripheral Insulin Sensitivity in Mice. Journal of Biological Chemistry, 2006, 281, 11039-11049.	1.6	463
20	Loss of ARNT/HIF1 \hat{l}^2 Mediates Altered Gene Expression and Pancreatic-Islet Dysfunction in Human Type 2 Diabetes. Cell, 2005, 122, 337-349.	13.5	460
21	Intermittent Fasting Promotes White Adipose Browning and Decreases Obesity by Shaping the GutÂMicrobiota. Cell Metabolism, 2017, 26, 672-685.e4.	7.2	427
22	The orphan nuclear receptor HNF4 $\hat{l}\pm$ determines PXR- and CAR-mediated xenobiotic induction of CYP3A4. Nature Medicine, 2003, 9, 220-224.	15.2	418
23	Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction. Nature Communications, 2015 , 6 , 10166 .	5.8	413
24	Gut microbiota–bile acid–interleukin-22 axis orchestrates polycystic ovary syndrome. Nature Medicine, 2019, 25, 1225-1233.	15.2	394
25	Cytochrome P450 enzymes involved in acetaminophen activation by rat and human liver microsomes and their kinetics. Chemical Research in Toxicology, 1993, 6, 511-518.	1.7	381
26	The role of peroxisome proliferator-activated receptors in carcinogenesis and chemoprevention. Nature Reviews Cancer, 2012, 12, 181-195.	12.8	379
27	Conditional Disruption of the Peroxisome Proliferator-Activated Receptor Î ³ Gene in Mice Results in Lowered Expression of ABCA1, ABCG1, and apoE in Macrophages and Reduced Cholesterol Efflux. Molecular and Cellular Biology, 2002, 22, 2607-2619.	1.1	357
28	Intestinal Hypoxia-Inducible Transcription Factors Are Essential for Iron Absorption following Iron Deficiency. Cell Metabolism, 2009, 9, 152-164.	7.2	353
29	Intestine farnesoid X receptor agonist and the gut microbiota activate Gâ€protein bile acid receptorâ€l signaling to improve metabolism. Hepatology, 2018, 68, 1574-1588.	3.6	348
30	Disrupted Bile Acid Homeostasis Reveals an Unexpected Interaction among Nuclear Hormone Receptors, Transporters, and Cytochrome P450. Journal of Biological Chemistry, 2001, 276, 39411-39418.	1.6	343
31	Spontaneous hepatocarcinogenesis in farnesoid X receptor-null mice. Carcinogenesis, 2007, 28, 940-946.	1.3	328
32	Hepatic Steatosis in Leptin-Deficient Mice Is Promoted by the PPARÎ ³ Target Gene Fsp27. Cell Metabolism, 2008, 7, 302-311.	7.2	294
33	Protection against Acetaminophen Toxicity in CYP1A2 and CYP2E1 Double-Null Mice. Toxicology and Applied Pharmacology, 1998, 152, 193-199.	1.3	288
34	CYP3A4 allelic variants with amino acid substitutions in exons 7 and 12: Evidence for an allelic variant with altered catalytic activity. Clinical Pharmacology and Therapeutics, 2000, 67, 48-56.	2.3	286
35	FXR signaling in the enterohepatic system. Molecular and Cellular Endocrinology, 2013, 368, 17-29.	1.6	285
36	METABOLISM OF MELATONIN BY HUMAN CYTOCHROMES P450. Drug Metabolism and Disposition, 2005, 33, 489-494.	1.7	274

#	Article	IF	Citations
37	PPARs as Metabolic Regulators in the Liver: Lessons from Liver-Specific PPAR-Null Mice. International Journal of Molecular Sciences, 2020, 21, 2061.	1.8	268
38	Peroxisome Proliferator-Activated Receptor \hat{l}_{\pm} Regulates a MicroRNA-Mediated Signaling Cascade Responsible for Hepatocellular Proliferation. Molecular and Cellular Biology, 2007, 27, 4238-4247.	1.1	264
39	Persistent Organic Pollutants Modify Gut Microbiota–Host Metabolic Homeostasis in Mice Through Aryl Hydrocarbon Receptor Activation. Environmental Health Perspectives, 2015, 123, 679-688.	2.8	262
40	Farnesoid X Receptor Deficiency Improves Glucose Homeostasis in Mouse Models of Obesity. Diabetes, 2011, 60, 1861-1871.	0.3	261
41	Farnesoid X Receptor Regulation of the NLRP3 Inflammasome Underlies Cholestasis-Associated Sepsis. Cell Metabolism, 2017, 25, 856-867.e5.	7.2	258
42	PPARα: Mechanism of species differences and hepatocarcinogenesis of peroxisome proliferators. Toxicology, 2008, 246, 2-8.	2.0	256
43	Lidocaine metabolism in human liver microsomes by cytochrome P450IIIA4. Clinical Pharmacology and Therapeutics, 1989, 46, 521-527.	2.3	254
44	An Intestinal Microbiota–Farnesoid X Receptor Axis Modulates Metabolic Disease. Gastroenterology, 2016, 151, 845-859.	0.6	254
45	Dietary Intake Regulates the Circulating Inflammatory Monocyte Pool. Cell, 2019, 178, 1102-1114.e17.	13.5	254
46	The role of hypoxia-inducible factors in metabolic diseases. Nature Reviews Endocrinology, 2019, 15, 21-32.	4.3	254
47	Aberrant Lipid Metabolism in Hepatocellular Carcinoma Revealed by Plasma Metabolomics and Lipid Profiling. Cancer Research, 2011, 71, 6590-6600.	0.4	243
48	LC-MS-Based Metabolomics in Drug Metabolism. Drug Metabolism Reviews, 2007, 39, 581-597.	1.5	242
49	Disruption of Hypoxia-Inducible Factor 1 in Adipocytes Improves Insulin Sensitivity and Decreases Adiposity in High-Fat Diet–Fed Mice. Diabetes, 2011, 60, 2484-2495.	0.3	241
50	Peroxisome proliferator-activated receptor- \hat{l}_{\pm} and liver cancer: where do we stand?. Journal of Molecular Medicine, 2005, 83, 774-785.	1.7	229
51	A Novel Role for the Dioxin Receptor in Fatty Acid Metabolism and Hepatic Steatosis. Gastroenterology, 2010, 139, 653-663.	0.6	228
52	PPARα Expression Protects Male Mice from High Fatâ€"Induced Nonalcoholic Fatty Liver1â€"3. Journal of Nutrition, 2011, 141, 603-610.	1.3	224
53	Cyp2c70 is responsible for the species difference in bile acid metabolism between mice and humans. Journal of Lipid Research, 2016, 57, 2130-2137.	2.0	221
54	Modification of Ocular Defects in Mouse Developmental Glaucoma Models by Tyrosinase. Science, 2003, 299, 1578-1581.	6.0	216

#	Article	IF	CITATIONS
55	Disruption of phospholipid and bile acid homeostasis in mice with nonalcoholic steatohepatitis. Hepatology, 2012, 56, 118-129.	3.6	215
56	Peroxisome proliferator-activated receptor? protects against alcohol-induced liver damage. Hepatology, 2004, 40, 972-980.	3.6	214
57	Liver Receptor Homologue-1 Mediates Species- and Cell Line-specific Bile Acid-dependent Negative Feedback Regulation of the Apical Sodium-dependent Bile Acid Transporter. Journal of Biological Chemistry, 2003, 278, 19909-19916.	1.6	211
58	Oral Benzo[a]pyrene in Cyp1 Knockout Mouse Lines: CYP1A1 Important in Detoxication, CYP1B1 Metabolism Required for Immune Damage Independent of Total-Body Burden and Clearance Rate. Molecular Pharmacology, 2006, 69, 1103-1114.	1.0	211
59	Challenges and opportunities of metabolomics. Journal of Cellular Physiology, 2012, 227, 2975-2981.	2.0	211
60	Xenobiotic Metabolomics: Major Impact on the Metabolome. Annual Review of Pharmacology and Toxicology, 2012, 52, 37-56.	4.2	209
61	Gut microbiota-derived bile acids in intestinal immunity, inflammation, and tumorigenesis. Cell Host and Microbe, 2022, 30, 289-300.	5.1	208
62	Critical role of cytochrome P450 2E1 (CYP2E1) in the development of high fat-induced non-alcoholic steatohepatitis. Journal of Hepatology, 2012, 57, 860-866.	1.8	204
63	Pregnane X receptor activation ameliorates DSS-induced inflammatory bowel disease via inhibition of NF-I ^o B target gene expression. American Journal of Physiology - Renal Physiology, 2007, 292, G1114-G1122.	1.6	202
64	Stabilization of Cytochrome P450j Messenger Ribonucleic Acid in the Diabetic Rat. Molecular Endocrinology, 1987, 1, 542-547.	3.7	200
65	Metabolomics. Cell Metabolism, 2007, 6, 348-351.	7.2	199
66	CYP2E1. Drug Metabolism and Disposition, 2007, 35, 1-8.	1.7	198
67	Farnesoid X Receptor Deficiency in Mice Leads to Increased Intestinal Epithelial Cell Proliferation and Tumor Development. Journal of Pharmacology and Experimental Therapeutics, 2009, 328, 469-477.	1.3	198
68	Diminished Hepatocellular Proliferation in Mice Humanized for the Nuclear Receptor Peroxisome Proliferator-Activated Receptor α. Cancer Research, 2004, 64, 3849-3854.	0.4	194
69	PPARα activation is essential for HCV core protein–induced hepatic steatosis and hepatocellular carcinoma in mice. Journal of Clinical Investigation, 2008, 118, 683-94.	3.9	194
70	Hypoxia-inducible factor- $1\hat{l}\pm$ regulates \hat{l}^2 cell function in mouse and human islets. Journal of Clinical Investigation, 2010, 120, 2171-2183.	3.9	191
71	Suppression of Hepatocyte Proliferation by Hepatocyte Nuclear Factor 4α in Adult Mice. Journal of Biological Chemistry, 2012, 287, 7345-7356.	1.6	173
72	Regulation of Hepatocyte Nuclear Factor 4α-mediated Transcription. Drug Metabolism and Pharmacokinetics, 2008, 23, 2-7.	1.1	171

#	Article	IF	Citations
73	CYP2E1 potentiates binge alcohol-induced gut leakiness, steatohepatitis, and apoptosis. Free Radical Biology and Medicine, 2013, 65, 1238-1245.	1.3	169
74	The role of farnesoid X receptor in metabolic diseases, and gastrointestinal and liver cancer. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 335-347.	8.2	167
75	Role of CYP1B1 in Glaucoma. Annual Review of Pharmacology and Toxicology, 2008, 48, 333-358.	4.2	165
76	Targeting nuclear receptors for the treatment of fatty liver disease., 2017, 179, 142-157.		164
77	Differential susceptibility of mice humanized for peroxisome proliferator-activated receptor \hat{l}_{\pm} to Wy-14,643-induced liver tumorigenesis. Carcinogenesis, 2006, 27, 1074-1080.	1.3	162
78	Serum Metabolomics Reveals Irreversible Inhibition of Fatty Acid \hat{I}^2 -Oxidation through the Suppression of PPAR \hat{I}^\pm Activation as a Contributing Mechanism of Acetaminophen-Induced Hepatotoxicity. Chemical Research in Toxicology, 2009, 22, 699-707.	1.7	159
79	THECYP2E1-HUMANIZED TRANSGENIC MOUSE: ROLE OF CYP2E1 IN ACETAMINOPHEN HEPATOTOXICITY. Drug Metabolism and Disposition, 2005, 33, 449-457.	1.7	156
80	FXR regulates organic solute transporters \hat{l}_{\pm} and \hat{l}_{\pm}^2 in the adrenal gland, kidney, and intestine. Journal of Lipid Research, 2006, 47, 201-214.	2.0	153
81	The PPARα-Humanized Mouse: A Model to Investigate Species Differences in Liver Toxicity Mediated by PPARα. Toxicological Sciences, 2008, 101, 132-139.	1.4	152
82	Bile acid signaling in lipid metabolism: Metabolomic and lipidomic analysis of lipid and bile acid markers linked to anti-obesity and anti-diabetes in mice. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 19-29.	1,2	152
83	Radiation Metabolomics. 1. Identification of Minimally Invasive Urine Biomarkers for Gamma-Radiation Exposure in Mice. Radiation Research, 2008, 170, 1-14.	0.7	151
84	An Intestinal Farnesoid X Receptor–Ceramide Signaling Axis Modulates Hepatic Gluconeogenesis in Mice. Diabetes, 2017, 66, 613-626.	0.3	151
85	Diabetic Nephropathy Is Accelerated by Farnesoid X Receptor Deficiency and Inhibited by Farnesoid X Receptor Activation in a Type 1 Diabetes Model. Diabetes, 2010, 59, 2916-2927.	0.3	149
86	Hepatocyte Nuclear Factor- $4\hat{l}_{\pm}$ Is Essential for Glucose-stimulated Insulin Secretion by Pancreatic \hat{l}^2 -Cells. Journal of Biological Chemistry, 2006, 281, 5246-5257.	1.6	148
87	The farnesoid X receptor modulates renal lipid metabolism and diet-induced renal inflammation, fibrosis, and proteinuria. American Journal of Physiology - Renal Physiology, 2009, 297, F1587-F1596.	1.3	147
88	Hypoxia-inducible transcription factor $2\hat{l}_{\pm}$ promotes steatohepatitis through augmenting lipid accumulation, inflammation, and fibrosis. Hepatology, 2011, 54, 472-483.	3.6	147
89	Hypoxia-Inducible Factor Augments Experimental Colitis Through an MIF–Dependent Inflammatory Signaling Cascade. Gastroenterology, 2008, 134, 2036-2048.e3.	0.6	146
90	Metabolomics Reveals that Hepatic Stearoyl-CoA Desaturase 1 Downregulation ExacerbatesÂInflammation and Acute Colitis. Cell Metabolism, 2008, 7, 135-147.	7.2	144

#	Article	IF	Citations
91	Therapeutic Role of Rifaximin in Inflammatory Bowel Disease: Clinical Implication of Human Pregnane X Receptor Activation. Journal of Pharmacology and Experimental Therapeutics, 2010, 335, 32-41.	1.3	144
92	The $\langle i \rangle$ CYP2D6 $\langle i \rangle$ Humanized Mouse: Effect of the Human $\langle i \rangle$ CYP2D6 $\langle i \rangle$ Transgene and $\langle i \rangle$ HNF4 $\hat{l}_{\pm} \langle i \rangle$ on the Disposition of Debrisoquine in the Mouse. Molecular Pharmacology, 2001, 60, 1260-1267.	1.0	142
93	UPLC-ESI-TOFMS-Based Metabolomics and Gene Expression Dynamics Inspector Self-Organizing Metabolomic Maps as Tools for Understanding the Cellular Response to Ionizing Radiation. Analytical Chemistry, 2008, 80, 665-674.	3.2	142
94	A Metabolomic Approach to the Metabolism of the Areca Nut Alkaloids Arecoline and Arecaidine in the Mouse. Chemical Research in Toxicology, 2006, 19, 818-827.	1.7	140
95	The Coactivator PGC-1 Is Involved in the Regulation of the Liver Carnitine Palmitoyltransferase I Gene Expression by cAMP in Combination with HNF4 \hat{l} ± and cAMP-response Element-binding Protein (CREB). Journal of Biological Chemistry, 2002, 277, 37991-38000.	1.6	138
96	Pregnane X receptor as a target for treatment of inflammatory bowel disorders. Trends in Pharmacological Sciences, 2012, 33, 323-330.	4.0	133
97	FXR/TGR5 Dual Agonist Prevents Progression of Nephropathy in Diabetes and Obesity. Journal of the American Society of Nephrology: JASN, 2018, 29, 118-137.	3.0	133
98	Hepatocyte Nuclear Factor $4\hat{l}_{\pm}$ Coordinates a Transcription Factor Network Regulating Hepatic Fatty Acid Metabolism. Molecular and Cellular Biology, 2010, 30, 565-577.	1.1	132
99	Molecular genetics of the debrisoquin-sparteine polymorphism. Clinical Pharmacology and Therapeutics, 1991, 50, 233-238.	2.3	131
100	Influence of conjugated linoleic acid on body composition and target gene expression in peroxisome proliferator-activated receptor α-null mice. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2001, 1533, 233-242.	1.2	131
101	Regulation of Constitutive Androstane Receptor and Its Target Genes by Fasting, cAMP, Hepatocyte Nuclear Factor \hat{l}_{\pm} , and the Coactivator Peroxisome Proliferator-activated Receptor \hat{l}_{\pm} Coactivator- $1\hat{l}_{\pm}$. Journal of Biological Chemistry, 2006, 281, 26540-26551.	1.6	131
102	The Pregnane X Receptor Gene-Humanized Mouse: A Model for Investigating Drug-Drug Interactions Mediated by Cytochromes P450 3A. Drug Metabolism and Disposition, 2007, 35, 194-200.	1.7	131
103	Regulation of Cyclic AMP Response Element Binding and Hippocampal Plasticity-Related Genes by Peroxisome Proliferator-Activated Receptor α. Cell Reports, 2013, 4, 724-737.	2.9	130
104	Human PXR modulates hepatotoxicity associated with rifampicin and isoniazid co-therapy. Nature Medicine, 2013, 19, 418-420.	15.2	130
105	Role of the hepatocyte nuclear factor $4\hat{l}\pm$ in control of the pregnane X receptor during fetal liver development. Hepatology, 2003, 37, 1375-1384.	3.6	129
106	Humanized Mouse Lines and Their Application for Prediction of Human Drug Metabolism and Toxicological Risk Assessment. Journal of Pharmacology and Experimental Therapeutics, 2008, 327, 288-299.	1.3	126
107	Identification of Novel Toxicity-associated Metabolites by Metabolomics and Mass Isotopomer Analysis of Acetaminophen Metabolism in Wild-type and Cyp2e1-null Mice. Journal of Biological Chemistry, 2008, 283, 4543-4559.	1.6	124
108	Peroxisome proliferator-activated receptor is restricted to hepatic parenchymal cells, not Kupffer cells: implications for the mechanism of action of peroxisome proliferators in hepatocarcinogenesis. Carcinogenesis, 2000, 21, 823-826.	1.3	122

#	Article	IF	Citations
109	PPARα-UGT axis activation represses intestinal FXR-FGF15 feedback signalling and exacerbates experimental colitis. Nature Communications, 2014, 5, 4573.	5.8	122
110	HMG-CoA Reductase Inhibitors Bind to PPARÎ \pm to Upregulate Neurotrophin Expression in the Brain and Improve Memory in Mice. Cell Metabolism, 2015, 22, 253-265.	7.2	122
111	Potential role of CYP1B1 in the development and treatment of metabolic diseases., 2017, 178, 18-30.		122
112	Regulation of bile acid biosynthesis by hepatocyte nuclear factor 4α. Journal of Lipid Research, 2006, 47, 215-227.	2.0	121
113	Low-dose dioxins alter gene expression related to cholesterol biosynthesis, lipogenesis, and glucose metabolism through the aryl hydrocarbon receptor-mediated pathway in mouse liver. Toxicology and Applied Pharmacology, 2008, 229, 10-19.	1.3	121
114	Farnesoid X receptor activation increases reverse cholesterol transport by modulating bile acid composition and cholesterol absorption in mice. Hepatology, 2016, 64, 1072-1085.	3.6	121
115	Chemogenetic disconnection of monkey orbitofrontal and rhinal cortex reversibly disrupts reward value. Nature Neuroscience, 2016, 19, 37-39.	7.1	121
116	Herbal drug discovery for the treatment of nonalcoholic fatty liver disease. Acta Pharmaceutica Sinica B, 2020, 10, 3-18.	5.7	121
117	Peroxisome Proliferator-activated Receptor-α Regulates Lipid Homeostasis, but Is Not Associated with Obesity. Journal of Biological Chemistry, 2001, 276, 39088-39093.	1.6	119
118	Role of peroxisome proliferator-activated receptor-Â (PPARÂ) in bezafibrate-induced hepatocarcinogenesis and cholestasis. Carcinogenesis, 2004, 26, 219-227.	1.3	119
119	Contribution of Individual Cytochrome P450 Isozymes to theO-Demethylation of the Psychotropic β-Carboline Alkaloids Harmaline and Harmine. Journal of Pharmacology and Experimental Therapeutics, 2003, 305, 315-322.	1.3	117
120	The stable repression of mesenchymal program is required for hepatocyte identity: A novel role for hepatocyte nuclear factor 4α. Hepatology, 2011, 53, 2063-2074.	3.6	116
121	Activation of peroxisome proliferator-activated receptor α stimulates ADAM10-mediated proteolysis of APP. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8445-8450.	3.3	116
122	Conditional Disruption of the Aryl Hydrocarbon Receptor Nuclear Translocator (Arnt) Gene Leads to Loss of Target Gene Induction by the Aryl Hydrocarbon Receptor and Hypoxia-Inducible Factor $1\hat{l}_{\pm}$. Molecular Endocrinology, 2000, 14, 1674-1681.	3.7	115
123	Fat-Specific Protein 27/CIDEC Promotes Development of Alcoholic Steatohepatitis in Mice and Humans. Gastroenterology, 2015, 149, 1030-1041.e6.	0.6	114
124	The pregnane X receptor: from bench to bedside. Expert Opinion on Drug Metabolism and Toxicology, 2008, 4, 895-908.	1.5	113
125	Polymorphic Cytochrome P450 2D6: Humanized Mouse Model and Endogenous Substrates. Drug Metabolism Reviews, 2004, 36, 243-277.	1.5	111
126	Rifampicin-Activated Human Pregnane X Receptor and CYP3A4 Induction Enhance Acetaminophen-Induced Toxicity. Drug Metabolism and Disposition, 2009, 37, 1611-1621.	1.7	111

#	Article	IF	Citations
127	Intestinal PPARα Protects Against Colon Carcinogenesis via Regulation of Methyltransferases DNMT1 and PRMT6. Gastroenterology, 2019, 157, 744-759.e4.	0.6	111
128	Effects of FXR in foam-cell formation and atherosclerosis development. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2006, 1761, 1401-1409.	1.2	110
129	Rifaximin Is a Gut-Specific Human Pregnane X Receptor Activator. Journal of Pharmacology and Experimental Therapeutics, 2007, 322, 391-398.	1.3	109
130	Radiation Metabolomics. 2. Dose- and Time-Dependent Urinary Excretion of Deaminated Purines and Pyrimidines after Sublethal Gamma-Radiation Exposure in Mice. Radiation Research, 2009, 172, 42-57.	0.7	109
131	Activation of intestinal hypoxia-inducible factor $2\hat{l}_{\pm}$ during obesity contributes to hepatic steatosis. Nature Medicine, 2017, 23, 1298-1308.	15.2	108
132	CYP1B1 determines susceptibility to low doses of 7,12-dimethylbenz[a]anthracene-induced ovarian cancers in mice: correlation of CYP1B1-mediated DNA adducts with carcinogenicity. Carcinogenesis, 2003, 24, 327-334.	1.3	106
133	Gender Differences in Bile Acids and Microbiota in Relationship with Gender Dissimilarity in Steatosis Induced by Diet and FXR Inactivation. Scientific Reports, 2017, 7, 1748.	1.6	103
134	Expression of the Human CYP3A4 Gene in the Small Intestine of Transgenic Mice: In Vitro Metabolism and Pharmacokinetics of Midazolam. Drug Metabolism and Disposition, 2003, 31, 548-558.	1.7	101
135	Cytochrome P450 1B1 Determines Susceptibility to Dibenzo[a,l]pyrene-Induced Tumor Formation. Chemical Research in Toxicology, 2002, 15, 1127-1135.	1.7	96
136	Identification of Novel Pathways That Control Farnesoid X Receptor-mediated Hypocholesterolemia. Journal of Biological Chemistry, 2010, 285, 3035-3043.	1.6	96
137	Defective Ureagenesis in Mice Carrying a Liver-specific Disruption of Hepatocyte Nuclear Factor 4α (HNF4α). Journal of Biological Chemistry, 2002, 277, 25257-25265.	1.6	95
138	Enhanced Acetaminophen Toxicity by Activation of the Pregnane X Receptor. Toxicological Sciences, 2004, 82, 374-380.	1.4	95
139	Peroxisome proliferator-activated receptor alpha induction of uncoupling protein 2 protects against acetaminophen-induced liver toxicity. Hepatology, 2012, 56, 281-290.	3.6	95
140	Role of fibroblast growth factor 21 in the early stage of NASH induced by methionine- and choline-deficient diet. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1242-1252.	1.8	95
141	Farnesoid X Receptor Signaling Shapes the Gut Microbiota and Controls Hepatic Lipid Metabolism. MSystems, 2016, 1 , .	1.7	95
142	Differential Metabolism of 2-Amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP) in Mice Humanized for CYP1A1 and CYP1A2. Chemical Research in Toxicology, 2005, 18, 1471-1478.	1.7	94
143	Radiation Metabolomics. 3. Biomarker Discovery in the Urine of Gamma-Irradiated Rats Using a Simplified Metabolomics Protocol of Gas Chromatography-Mass Spectrometry Combined with Random Forests Machine Learning Algorithm. Radiation Research, 2009, 172, 198-212.	0.7	94
144	Radiation Metabolomics. 4. UPLC-ESI-QTOFMS-Based Metabolomics for Urinary Biomarker Discovery in Gamma-Irradiated Rats. Radiation Research, 2011, 175, 473-484.	0.7	92

#	Article	IF	CITATIONS
145	Hepatocyte Nuclear Factor $4\hat{l}\pm$ Is a Central Regulator of Bile Acid Conjugation. Journal of Biological Chemistry, 2004, 279, 2480-2489.	1.6	90
146	Cooperative Interaction between Hepatocyte Nuclear Factor $4\hat{l}\pm$ and GATA Transcription Factors Regulates ATP-Binding Cassette Sterol Transporters ABCG5 and ABCG8. Molecular and Cellular Biology, 2007, 27, 4248-4260.	1.1	88
147	Xenobiotic Metabolism: A View through the Metabolometer. Chemical Research in Toxicology, 2010, 23, 851-860.	1.7	88
148	Transgenic Animal Models in Toxicology: Historical Perspectives and Future Outlook. Toxicological Sciences, 2011, 121, 207-233.	1.4	88
149	Radiation Metabolomics. 5. Identification of Urinary Biomarkers of Ionizing Radiation Exposure in Nonhuman Primates by Mass Spectrometry-Based Metabolomics. Radiation Research, 2012, 178, 328.	0.7	88
150	Lithocholic acid disrupts phospholipid and sphingolipid homeostasis leading to cholestasis in mice. Hepatology, 2011, 53, 1282-1293.	3.6	86
151	Growth Hormone Determines Sexual Dimorphism of Hepatic Cytochrome P450 3A4 Expression in Transgenic Mice. Journal of Pharmacology and Experimental Therapeutics, 2006, 316, 1328-1334.	1.3	84
152	Polyenephosphatidylcholine prevents alcoholic liver disease in PPARα-null mice through attenuation of increases in oxidative stress. Journal of Hepatology, 2009, 50, 1236-1246.	1.8	84
153	Intestinal Farnesoid X Receptor Signaling Modulates Metabolic Disease. Digestive Diseases, 2017, 35, 178-184.	0.8	81
154	Metabolomic and Genetic Analysis of Biomarkers for Peroxisome Proliferator-Activated Receptor \hat{l}_{\pm} Expression and Activation. Molecular Endocrinology, 2007, 21, 2136-2151.	3.7	79
155	Hepatic CCAAT/Enhancer Binding Protein α Mediates Induction of Lipogenesis and Regulation of Glucose Homeostasis in Leptin-Deficient Mice. Molecular Endocrinology, 2004, 18, 2751-2764.	3.7	78
156	Metabolomics Reveals Attenuation of the SLC6A20 Kidney Transporter in Nonhuman Primate and Mouse Models of Type 2 Diabetes Mellitus. Journal of Biological Chemistry, 2011, 286, 19511-19522.	1.6	78
157	SUMOylation inhibitors synergize with FXR agonists in combating liver fibrosis. Nature Communications, 2020, 11, 240.	5.8	78
158	Adipocyte-specific Disruption of Fat-specific Protein 27 Causes Hepatosteatosis and Insulin Resistance in High-fat Diet-fed Mice. Journal of Biological Chemistry, 2015, 290, 3092-3105.	1.6	77
159	Effect of Peroxisome Proliferator-Activated Receptor Alpha Activators on Tumor Necrosis Factor Expression in Mice during Endotoxemia. Infection and Immunity, 1999, 67, 3488-3493.	1.0	77
160	Ablation of ARNT/HIF1 \hat{l}^2 in Liver Alters Gluconeogenesis, Lipogenic Gene Expression, and Serum Ketones. Cell Metabolism, 2009, 9, 428-439.	7.2	76
161	Metabolomics Identifies an Inflammatory Cascade Involved in Dioxin- and Diet-Induced Steatohepatitis. Cell Metabolism, 2012, 16, 634-644.	7.2	76
162	Network Analysis of a Pkd1-Mouse Model of Autosomal Dominant Polycystic Kidney Disease Identifies $HNF4\hat{l}\pm as$ a Disease Modifier. PLoS Genetics, 2012, 8, e1003053.	1.5	75

#	Article	IF	CITATIONS
163	LC–MS-based metabolomics: an update. Archives of Toxicology, 2014, 88, 1491-1502.	1.9	75
164	Potential Role for Human Cytochrome P450 3A4 in Estradiol Homeostasis. Endocrinology, 2005, 146, 2911-2919.	1.4	73
165	UPLC–MS-based Urine Metabolomics Reveals Indole-3-lactic Acid and Phenyllactic Acid as Conserved Biomarkers for Alcohol-induced Liver Disease in the <i>Ppara</i> -null Mouse Model. Journal of Proteome Research, 2011, 10, 4120-4133.	1.8	7 3
166	Biomarkers of Coordinate Metabolic Reprogramming in Colorectal Tumors in Mice and Humans. Gastroenterology, 2014, 146, 1313-1324.	0.6	73
167	Rutaecarpine inhibits KEAP1-NRF2 interaction to activate NRF2 and ameliorate dextran sulfate sodium-induced colitis. Free Radical Biology and Medicine, 2020, 148, 33-41.	1.3	73
168	Role of cytochrome P450 2E1 in protein nitration and ubiquitin-mediated degradation during acetaminophen toxicity. Biochemical Pharmacology, 2010, 79, 57-66.	2.0	72
169	Role of Pregnane X Receptor in Obesity and Glucose Homeostasis in Male Mice. Journal of Biological Chemistry, 2014, 289, 3244-3261.	1.6	72
170	Nuclear Receptor Control of Enterohepatic Circulation. , 2012, 2, 2811-2828.		71
171	Hepatocyte-specific PPARA expression exclusively promotes agonist-induced cell proliferation without influence from nonparenchymal cells. American Journal of Physiology - Renal Physiology, 2017, 312, G283-G299.	1.6	71
172	Role of peroxisome proliferator-activated receptor-α in fasting-mediated oxidative stress. Free Radical Biology and Medicine, 2009, 47, 767-778.	1.3	70
173	REVERBa couples the circadian clock to hepatic glucocorticoid action. Journal of Clinical Investigation, 2018, 128, 4454-4471.	3.9	70
174	Regeneration of serotonin from 5-methoxytryptamine by polymorphic human CYP2D6. Pharmacogenetics and Genomics, 2003, 13, 173-81.	5.7	69
175	New neolignans from the seeds of Myristica fragrans that inhibit nitric oxide production. Food Chemistry, 2015, 173, 231-237.	4.2	67
176	Eicosapentaenoic acid improves hepatic steatosis independent of PPARα activation through inhibition of SREBP-1 maturation in mice. Biochemical Pharmacology, 2010, 80, 1601-1612.	2.0	66
177	Antagonism of the Actions of Peroxisome Proliferator-activated Receptor-α by Bile Acids. Journal of Biological Chemistry, 2001, 276, 47154-47162.	1.6	65
178	A Comprehensive Investigation of 2-Amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP) Metabolism in the Mouse Using a Multivariate Data Analysis Approach. Chemical Research in Toxicology, 2007, 20, 531-542.	1.7	64
179	Role of Myc in hepatocellular proliferation and hepatocarcinogenesis. Journal of Hepatology, 2014, 60, 331-338.	1.8	64
180	Saikosaponin d protects against acetaminophen-induced hepatotoxicity by inhibiting NF-κB and STAT3 signaling. Chemico-Biological Interactions, 2014, 223, 80-86.	1.7	64

#	Article	IF	CITATIONS
181	Glycyrrhizin Alleviates Nonalcoholic Steatohepatitis via Modulating Bile Acids and Meta-Inflammation. Drug Metabolism and Disposition, 2018, 46, 1310-1319.	1.7	64
182	Metabolomics reveals an essential role for peroxisome proliferator-activated receptor \hat{l}_{\pm} in bile acid homeostasis. Journal of Lipid Research, 2012, 53, 1625-1635.	2.0	63
183	Abcb 11 Deficiency Induces Cholestasis Coupled to Impaired \hat{l}^2 -Fatty Acid Oxidation in Mice. Journal of Biological Chemistry, 2012, 287, 24784-24794.	1.6	63
184	Identification and characterization of PPARÎ \pm ligands in the hippocampus. Nature Chemical Biology, 2016, 12, 1075-1083.	3.9	63
185	Urinary Metabolite Profiling Reveals CYP1A2-Mediated Metabolism of NSC686288 (Aminoflavone). Journal of Pharmacology and Experimental Therapeutics, 2006, 318, 1330-1342.	1.3	62
186	Hepatic Expression of the UGT1A9 Gene Is Governed by Hepatocyte Nuclear Factor 4α. Molecular Pharmacology, 2005, 67, 241-249.	1.0	61
187	The metabolomics of (\hat{A}_{\pm}) -arecoline 1-oxide in the mouse and its formation by human flavin-containing monooxygenases. Biochemical Pharmacology, 2007, 73, 561-573.	2.0	61
188	Phenotype of the <i> Cyp1a1 < /i > / (i > 1a2 < /i > / (i > 1b1 < /i > (-/-) Triple-Knockout Mouse. Molecular Pharmacology, 2008, 73, 1844-1856.</i>	1.0	61
189	Hypoxia-inducible Factor 1α Regulates a SOCS3-STAT3-Adiponectin Signal Transduction Pathway in Adipocytes. Journal of Biological Chemistry, 2013, 288, 3844-3857.	1.6	61
190	Hypoxia-Inducible Factor- $1\hat{l}$ ± (HIF- $1\hat{l}$ ±) Potentiates \hat{l} 2-Cell Survival after Islet Transplantation of Human and Mouse Islets. Cell Transplantation, 2013, 22, 253-266.	1.2	61
191	A Metabolomic Perspective of Melatonin Metabolism in the Mouse. Endocrinology, 2008, 149, 1869-1879.	1.4	60
192	Implication of intestinal VDR deficiency in inflammatory bowel disease. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 2118-2128.	1.1	60
193	Role of white adipose lipolysis in the development of NASH induced by methionine- and choline-deficient diet. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 1596-1607.	1.2	60
194	Hypoxia-Inducible Factor/MAZ-Dependent Induction of Caveolin-1 Regulates Colon Permeability through Suppression of Occludin, Leading to Hypoxia-Induced Inflammation. Molecular and Cellular Biology, 2014, 34, 3013-3023.	1.1	59
195	Cytochrome P450 1B1 Contributes to Angiotensin Il–Induced Hypertension and Associated Pathophysiology. Hypertension, 2010, 56, 667-674.	1.3	58
196	Potential role of CYP2D6 in the central nervous system. Xenobiotica, 2013, 43, 973-984.	0.5	58
197	Identification of Noninvasive Biomarkers for Alcohol-Induced Liver Disease Using Urinary Metabolomics and the <i>Ppara</i> -null Mouse. Journal of Proteome Research, 2010, 9, 4176-4188.	1.8	57
198	Steatogenesis in adult-onset type II citrullinemia is associated with down-regulation of PPARα. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 473-481.	1.8	57

#	Article	IF	CITATIONS
199	A Double Transgenic Mouse Model Expressing Human Pregnane X Receptor and Cytochrome P450 3A4. Drug Metabolism and Disposition, 2008, 36, 2506-2512.	1.7	56
200	Urinary metabolites and antioxidant products of exogenous melatonin in the mouse. Journal of Pineal Research, 2006, 40, 343-349.	3.4	55
201	Role of hepatocyte nuclear factor $4\hat{l}_{\pm}$ in control of blood coagulation factor gene expression. Journal of Molecular Medicine, 2006, 84, 334-344.	1.7	55
202	Human Urinary Metabolomic Profile of PPARÎ \pm Induced Fatty Acid Î 2 -Oxidation. Journal of Proteome Research, 2009, 8, 4293-4300.	1.8	55
203	Wuzhi Tablet (<i>Schisandra Sphenanthera</i> Extract) Protects against Acetaminophen-Induced Hepatotoxicity by Inhibition of CYP-Mediated Bioactivation and Regulation of NRF2-ARE and p53/p21 Pathways. Drug Metabolism and Disposition, 2014, 42, 1982-1990.	1.7	55
204	Intestinal CYP3A4 protects against lithocholic acid-induced hepatotoxicity in intestine-specific VDR-deficient mice. Journal of Lipid Research, 2014, 55, 455-465.	2.0	55
205	Comparative metabolism of cyclophosphamide and ifosfamide in the mouse using UPLC–ESI-QTOFMS-based metabolomics. Biochemical Pharmacology, 2010, 80, 1063-1074.	2.0	54
206	Glycyrrhizin Protects against Acetaminophen-Induced Acute Liver Injury via Alleviating Tumor Necrosis Factor Â-Mediated Apoptosis. Drug Metabolism and Disposition, 2016, 44, 720-731.	1.7	54
207	Cytochrome P450 Expression and Regulation in CYP3A4/CYP2D6 Double Transgenic Humanized Mice. Drug Metabolism and Disposition, 2008, 36, 435-441.	1.7	53
208	Metabolic map and bioactivation of the antiâ€tumour drug noscapine. British Journal of Pharmacology, 2012, 167, 1271-1286.	2.7	53
209	CYP2E1-dependent elevation of serum cholesterol, triglycerides, and hepatic bile acids by isoniazid. Toxicology and Applied Pharmacology, 2013, 266, 245-253.	1.3	53
210	Disruption of Thioredoxin Reductase 1 Protects Mice from Acute Acetaminophen-Induced Hepatotoxicity through Enhanced NRF2 Activity. Chemical Research in Toxicology, 2013, 26, 1088-1096.	1.7	53
211	Hepatic oxidative stress activates the <i> Gadd45b < /i > gene by way of degradation of the transcriptional repressor STAT3. Hepatology, 2014, 59, 695-704.</i>	3.6	52
212	Long non-coding RNA Gm15441 attenuates hepatic inflammasome activation in response to PPARA agonism and fasting. Nature Communications, 2020, 11, 5847.	5.8	52
213	N-methylnicotinamide and nicotinamide N-methyltransferase are associated with microRNA-1291-altered pancreatic carcinoma cell metabolome and suppressed tumorigenesis. Carcinogenesis, 2014, 35, 2264-2272.	1.3	51
214	Extrahepatic PPAR \hat{l} ± modulates fatty acid oxidation and attenuates fasting-induced hepatosteatosis in mice. Journal of Lipid Research, 2018, 59, 2140-2152.	2.0	51
215	Estrogen Metabolism by Cytochrome P450 1B1 Modulates the Hypertensive Effect of Angiotensin II in Female Mice. Hypertension, 2014, 64, 134-140.	1.3	50
216	Adipocyte-derived Lysophosphatidylcholine Activates Adipocyte and Adipose Tissue Macrophage Nod-Like Receptor Protein 3 Inflammasomes Mediating Homocysteine-Induced Insulin Resistance. EBioMedicine, 2018, 31, 202-216.	2.7	50

#	Article	IF	Citations
217	Suppressing the intestinal farnesoid X receptor/sphingomyelin phosphodiesterase 3 axis decreases atherosclerosis. Journal of Clinical Investigation, 2021, 131, .	3.9	50
218	Novel metabolites and roles for α-tocopherol in humans and mice discovered by mass spectrometry–based metabolomics. American Journal of Clinical Nutrition, 2012, 96, 818-830.	2.2	49
219	CYP2C11 and CYP2B1 are major cytochrome P450 forms involved in styrene oxidation in liver and lung microsomes from untreated rats, respectively. Biochemical Pharmacology, 1994, 48, 637-642.	2.0	48
220	Altered Expression of Small Heterodimer Partner Governs Cytochrome P450 (CYP) 2D6 Induction during Pregnancy in CYP2D6-humanized Mice. Journal of Biological Chemistry, 2014, 289, 3105-3113.	1.6	48
221	Molecular mechanism of trichloroethylene-induced hepatotoxicity mediated by CYP2E1. Toxicology and Applied Pharmacology, 2008, 231, 300-307.	1.3	47
222	Alterations in Hepatic mRNA Expression of Phase II Enzymes and Xenobiotic Transporters after Targeted Disruption of Hepatocyte Nuclear Factor 4 Alpha. Toxicological Sciences, 2010, 118, 380-390.	1.4	47
223	Cytochrome P450 1B1 Contributes to Renal Dysfunction and Damage Caused by Angiotensin II in Mice. Hypertension, 2012, 59, 348-354.	1.3	47
224	Lipidomics Reveals a Link between CYP1B1 and SCD1 in Promoting Obesity. Journal of Proteome Research, 2014, 13, 2679-2687.	1.8	46
225	Metabolic profiling by gas chromatography-mass spectrometry of energy metabolism in high-fat diet-fed obese mice. PLoS ONE, 2017, 12, e0177953.	1.1	46
226	HUMAN CYP2D6 AND MOUSE CYP2DS: ORGAN DISTRIBUTION IN A HUMANIZED MOUSE MODEL. Drug Metabolism and Disposition, 2005, 33, 1495-1502.	1.7	45
227	Celastrol Protects From Cholestatic Liver Injury Through Modulation of SIRT1-FXR Signaling. Molecular and Cellular Proteomics, 2019, 18, 520-533.	2.5	45
228	Hepatocyte-restricted constitutive activation of PPARÂ induces hepatoproliferation but not hepatocarcinogenesis. Carcinogenesis, 2007, 28, 1171-1177.	1.3	44
229	Modulation of Colon Cancer by Nutmeg. Journal of Proteome Research, 2015, 14, 1937-1946.	1.8	44
230	Gemfibrozil disrupts lysophosphatidylcholine and bile acid homeostasis via PPARÎ \pm and its relevance to hepatotoxicity. Archives of Toxicology, 2014, 88, 983-996.	1.9	42
231	HIF2 \hat{l}_{\pm} Is an Essential Molecular Brake for Postprandial Hepatic Glucagon Response Independent of Insulin Signaling. Cell Metabolism, 2016, 23, 505-516.	7.2	42
232	Modulation of Lipid Metabolism by Celastrol. Journal of Proteome Research, 2019, 18, 1133-1144.	1.8	42
233	Comprehensive analysis of transcriptomics and metabolomics to understand triptolide-induced liver injury in mice. Toxicology Letters, 2020, 333, 290-302.	0.4	42
234	Urinary metabolomics in Fxr-null mice reveals activated adaptive metabolic pathways upon bile acid challenge. Journal of Lipid Research, 2010, 51, 1063-1074.	2.0	41

#	Article	IF	Citations
235	Polyamine metabolism links gut microbiota and testicular dysfunction. Microbiome, 2021, 9, 224.	4.9	41
236	Metabolic profiling of praziquantel enantiomers. Biochemical Pharmacology, 2014, 90, 166-178.	2.0	40
237	Transgenic mice and metabolomics for study of hepatic xenobiotic metabolism and toxicity. Expert Opinion on Drug Metabolism and Toxicology, 2015, 11, 869-881.	1.5	39
238	Disruption of Endothelial Peroxisome Proliferator-Activated Receptor Î ³ Accelerates Diet-Induced Atherogenesis in LDL Receptor-Null Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 65-73.	1.1	38
239	Inhibition of JNK signalling mediates PPARαâ€dependent protection against intrahepatic cholestasis by fenofibrate. British Journal of Pharmacology, 2017, 174, 3000-3017.	2.7	38
240	Pregnane X receptor―and <i>CYP3A4</i> â€humanized mouse models and their applications. British Journal of Pharmacology, 2011, 163, 461-468.	2.7	37
241	The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A. Toxicology and Applied Pharmacology, 2013, 273, 90-99.	1.3	37
242	Bile acid sequestration reverses liver injury and prevents progression of nonalcoholic steatohepatitis in Western diet–fed mice. Journal of Biological Chemistry, 2020, 295, 4733-4747.	1.6	37
243	CYP3A4 and pregnane X receptor humanized mice. Journal of Biochemical and Molecular Toxicology, 2007, 21, 158-162.	1.4	36
244	Differential Response to Trichloroethylene-Induced Hepatosteatosis in Wild-Type and PPARα-Humanized Mice. Environmental Health Perspectives, 2010, 118, 1557-1563.	2.8	36
245	$6\hat{l}^2$ -Hydroxytestosterone, a Cytochrome P450 1B1 Metabolite of Testosterone, Contributes to Angiotensin Ilâ \in "Induced Hypertension and Its Pathogenesis in Male Mice. Hypertension, 2015, 65, 1279-1287.	1.3	36
246	Growth arrest and DNA damage-inducible $45\hat{l}\pm$ protects against nonalcoholic steatohepatitis induced by methionine- and choline-deficient diet. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 3170-3182.	1.8	36
247	Intestinal peroxisome proliferatorâ€activated receptor αâ€fatty acidâ€binding protein 1 axis modulates nonalcoholic steatohepatitis. Hepatology, 2023, 77, 239-255.	3.6	36
248	Chronic Exposure to Rifaximin Causes Hepatic Steatosis in Pregnane X Receptor-Humanized Mice. Toxicological Sciences, 2012, 129, 456-468.	1.4	35
249	Targeted Metabolomics of Serum Acylcarnitines Evaluates Hepatoprotective Effect of Wuzhi Tablet (<i>Schisandra sphenanthera</i> Extract) against Acute Acetaminophen Toxicity. Evidence-based Complementary and Alternative Medicine, 2013, 2013, 1-13.	0.5	35
250	PPARα-dependent exacerbation of experimental colitis by the hypolipidemic drug fenofibrate. American Journal of Physiology - Renal Physiology, 2014, 307, G564-G573.	1.6	35
251	Cytochrome P450 1B1 Contributes to the Development of Atherosclerosis and Hypertension in Apolipoprotein E–Deficient Mice. Hypertension, 2016, 67, 206-213.	1.3	35
252	Role of Farnesoid X Receptor and Bile Acids in Hepatic Tumor Development. Hepatology Communications, 2018, 2, 1567-1582.	2.0	35

#	Article	IF	CITATIONS
253	Metabolic alterations in triptolideâ€induced acute hepatotoxicity. Biomedical Chromatography, 2018, 32, e4299.	0.8	35
254	YAPâ€TEAD mediates PPAR α–induced hepatomegaly and liver regeneration in mice. Hepatology, 2022, 75, 74-88.	3.6	35
255	Regulation of Mouse Hepatic α-Amino-β-Carboxymuconate-ϵ-Semialdehyde Decarboxylase, a Key Enzyme in the Tryptophan-Nicotinamide Adenine Dinucleotide Pathway, by Hepatocyte Nuclear Factor 4α and Peroxisome Proliferator-Activated Receptor α. Molecular Pharmacology, 2006, 70, 1281-1290.	1.0	34
256	Metabolomics reveals the metabolic map of procainamide in humans and mice. Biochemical Pharmacology, 2012, 83, 1435-1444.	2.0	34
257	Therapeutic Efficacy of Wuzhi Tablet (<i>Schisandra sphenanthera</i> Extract) on Acetaminophen-Induced Hepatotoxicity through a Mechanism Distinct from <i>N</i> -Acetylcysteine. Drug Metabolism and Disposition, 2015, 43, 317-324.	1.7	33
258	Hepatocyte peroxisome proliferator-activated receptor α regulates bile acid synthesis and transport. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 1396-1411.	1.2	33
259	Chenodeoxycholic Acid-mediated Activation of the Farnesoid X Receptor Negatively Regulates Hydroxysteroid Sulfotransferase. Drug Metabolism and Pharmacokinetics, 2006, 21, 315-323.	1.1	32
260	A comprehensive understanding of thioTEPA metabolism in the mouse using UPLC–ESI-QTOFMS-based metabolomics. Biochemical Pharmacology, 2011, 81, 1043-1053.	2.0	32
261	Role of human pregnane X receptor in high fat diet-induced obesity in pre-menopausal female mice. Biochemical Pharmacology, 2014, 89, 399-412.	2.0	32
262	Glycyrrhizin and glycyrrhetinic acid inhibits alpha-naphthyl isothiocyanate-induced liver injury and bile acid cycle disruption. Toxicology, 2017, 386, 133-142.	2.0	32
263	Noncanonical farnesoid X receptor signaling inhibits apoptosis and impedes liver fibrosis. EBioMedicine, 2018, 37, 322-333.	2.7	32
264	Pregnane X receptor activation potentiates ritonavir hepatotoxicity. Journal of Clinical Investigation, 2019, 129, 2898-2903.	3.9	32
265	Progressive Glomerulonephritis and Histiocytic Sarcoma Associated with Macrophage Functional Defects in CYP1B1-Deficient Mice. Toxicologic Pathology, 2004, 32, 710-718.	0.9	31
266	Role of the lipid-regulated NF-κB/IL-6/STAT3 axis in alpha-naphthyl isothiocyanate-induced liver injury. Archives of Toxicology, 2017, 91, 2235-2244.	1.9	31
267	Regulation of Drug Transporters by the Farnesoid X Receptor in Mice. Molecular Pharmaceutics, 2004, 1, 281-289.	2.3	30
268	Fenofibrate Metabolism in the Cynomolgus Monkey using Ultraperformance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry-Based Metabolomics. Drug Metabolism and Disposition, 2009, 37, 1157-1163.	1.7	30
269	Role of Farnesoid X Receptor in the Enhancement of Canalicular Bile Acid Output and Excretion of Unconjugated Bile Acids: A Mechanism for Protection against Cholic Acid-Induced Liver Toxicity. Journal of Pharmacology and Experimental Therapeutics, 2005, 312, 759-766.	1.3	29
270	Humanized Transgenic Mouse Models for Drug Metabolism and Pharmacokinetic Research. Current Drug Metabolism, 2011, 12, 997-1006.	0.7	29

#	Article	IF	CITATIONS
271	Stable Isotope- and Mass Spectrometry-based Metabolomics as Tools in Drug Metabolism: A Study Expanding Tempol Pharmacology. Journal of Proteome Research, 2013, 12, 1369-1376.	1.8	29
272	A model of in vitro UDP-glucuronosyltransferase inhibition by bile acids predicts possible metabolic disorders. Journal of Lipid Research, 2013, 54, 3334-3344.	2.0	29
273	PPARα protects against trans -fatty-acid-containing diet-induced steatohepatitis. Journal of Nutritional Biochemistry, 2017, 39, 77-85.	1.9	29
274	PPARα-Dependent Activation of Cell Cycle Control and DNA Repair Genes in Hepatic Nonparenchymal Cells. Toxicological Sciences, 2010, 118, 404-410.	1.4	28
275	TGF-Î ² -SMAD3 signaling mediates hepatic bile acid and phospholipid metabolism following lithocholic acid-induced liver injury. Journal of Lipid Research, 2012, 53, 2698-2707.	2.0	28
276	<i>In vivo</i> effects of the pure aryl hydrocarbon receptor antagonist <scp>GNF</scp> â€351 after oral administration are limited to the gastrointestinal tract. British Journal of Pharmacology, 2014, 171, 1735-1746.	2.7	28
277	Inhibition of farnesoid X receptor signaling shows beneficial effects in human obesity. Journal of Hepatology, 2015, 62, 1234-1236.	1.8	28
278	Myelocytomatosisâ€Protein Arginine Nâ€Methyltransferase 5 Axis Defines the Tumorigenesis and Immune Response in Hepatocellular Carcinoma. Hepatology, 2021, 74, 1932-1951.	3.6	28
279	Anks4b, a Novel Target of HNF4 \hat{l} ± Protein, Interacts with GRP78 Protein and Regulates Endoplasmic Reticulum Stress-induced Apoptosis in Pancreatic \hat{l} 2-Cells. Journal of Biological Chemistry, 2012, 287, 23236-23245.	1.6	27
280	Impaired clearance of sunitinib leads to metabolic disorders and hepatotoxicity. British Journal of Pharmacology, 2019, 176, 2162-2178.	2.7	27
281	Intestinal MYC modulates obesity-related metabolic dysfunction. Nature Metabolism, 2021, 3, 923-939.	5.1	27
282	Pregnane X receptor-mediated induction of Cyp3a by black cohosh. Xenobiotica, 2011, 41, 112-123.	0.5	26
283	Modulation of Mouse Coagulation Gene Transcription following Acute In Vivo Delivery of Synthetic Small Interfering RNAs Targeting HNF4α and C/EBPα. PLoS ONE, 2012, 7, e38104.	1.1	26
284	Improved drug therapy: triangulating phenomics with genomics and metabolomics. Human Genomics, 2014, 8, 16.	1.4	26
285	Mechanism of the development of nonalcoholic steatohepatitis after pancreaticoduodenectomy. BBA Clinical, 2015, 3, 168-174.	4.1	26
286	Metabolic map of osthole and its effect on lipids. Xenobiotica, 2018, 48, 285-299.	0.5	26
287	The pathophysiological function of non-gastrointestinal farnesoid X receptor. , 2021, 226, 107867.		26
288	Upregulation of BDNF and hippocampal functions by a hippocampal ligand of PPARα. JCI Insight, 2020, 5, .	2.3	26

#	Article	IF	CITATIONS
289	Cytochrome P450 1B1 Gene Disruption Minimizes Deoxycorticosterone Acetate-Salt–Induced Hypertension and Associated Cardiac Dysfunction and Renal Damage in Mice. Hypertension, 2012, 60, 1510-1516.	1.3	25
290	Cytochrome P450 Regulation by $\langle i \rangle \hat{l} \pm \langle i \rangle$ -Tocopherol in $\langle i \rangle$ Pxr $\langle i \rangle$ -Null and $\langle i \rangle$ PXR $\langle i \rangle$ -Humanized Mice. Drug Metabolism and Disposition, 2013, 41, 406-413.	1.7	25
291	A lipidomics investigation into the intervention of celastrol in experimental colitis. Molecular BioSystems, 2016, 12, 1436-1444.	2.9	25
292	2-Methoxyestradiol Reduces Angiotensin II–Induced Hypertension and Renal Dysfunction in Ovariectomized Female and Intact Male Mice. Hypertension, 2017, 69, 1104-1112.	1.3	25
293	Metabolic Profiling of the Novel Hypoxia-Inducible Factor $2 < i > \hat{l} \pm < / i > Inhibitor PT2385 In Vivo and In Vitro. Drug Metabolism and Disposition, 2018, 46, 336-345.$	1.7	25
294	Keratin 23 Is a Peroxisome Proliferatorâ€Activated Receptor Alpha–Dependent, MYCâ€Amplified Oncogene That Promotes Hepatocyte Proliferation. Hepatology, 2019, 70, 154-167.	3.6	25
295	Exposure to DEHP decreased four fatty acid levels in plasma of prepartum mice. Toxicology, 2013, 309, 52-60.	2.0	24
296	Celastrol ameliorates acute liver injury through modulation of PPARα. Biochemical Pharmacology, 2020, 178, 114058.	2.0	24
297	Metabolomics Identifies Novel $Hnf1\hat{l}_{\pm}$ -Dependent Physiological Pathways in Vivo. Molecular Endocrinology, 2010, 24, 2343-2355.	3.7	23
298	The antiandrogen flutamide is a novel aryl hydrocarbon receptor ligand that disrupts bile acid homeostasis in mice through induction of Abcc4. Biochemical Pharmacology, 2016, 119, 93-104.	2.0	23
299	Role of Metabolic Activation in Elemicin-Induced Cellular Toxicity. Journal of Agricultural and Food Chemistry, 2019, 67, 8243-8252.	2.4	23
300	Hepatocyte Peroxisome Proliferator–Activated Receptor α Enhances Liver Regeneration after Partial Hepatectomy in Mice. American Journal of Pathology, 2019, 189, 272-282.	1.9	23
301	Phosphorylation of Farnesoid X Receptor at Serine 154 Links Ligand Activation With Degradation. Molecular Endocrinology, 2016, 30, 1070-1080.	3.7	22
302	Metabolomics reveals trichloroacetate as a major contributor to trichloroethylene-induced metabolic alterations in mouse urine and serum. Archives of Toxicology, 2013, 87, 1975-1987.	1.9	21
303	Activation of Intestinal Human Pregnane X Receptor Protects against Azoxymethane/Dextran Sulfate Sodium–Induced Colon Cancer. Journal of Pharmacology and Experimental Therapeutics, 2014, 351, 559-567.	1.3	21
304	Structure-Activity Relationships of the Main Bioactive Constituents of <i>Euodia rutaecarpa</i> on Aryl Hydrocarbon Receptor Activation and Associated Bile Acid Homeostasis. Drug Metabolism and Disposition, 2018, 46, 1030-1040.	1.7	21
305	A metabolomic perspective of pazopanib-induced acute hepatotoxicity in mice. Xenobiotica, 2019, 49, 655-670.	0.5	21
306	MicroRNA-1291-5p Sensitizes Pancreatic Carcinoma Cells to Arginine Deprivation and Chemotherapy through the Regulation of Arginolysis and Glycolysis. Molecular Pharmacology, 2020, 98, 686-694.	1.0	21

#	Article	IF	CITATIONS
307	Irinotecan (CPT-11)-induced elevation of bile acids potentiates suppression of IL-10 expression. Toxicology and Applied Pharmacology, 2016, 291, 21-27.	1.3	20
308	$PPAR\hat{l}_{\pm}$ Mediates the Hepatoprotective Effects of Nutmeg. Journal of Proteome Research, 2018, 17, 1887-1897.	1.8	20
309	Metabolic adaptation to intermittent fasting is independent of peroxisome proliferator-activated receptor alpha. Molecular Metabolism, 2018, 7, 80-89.	3.0	20
310	The Protective Roles of PPARα Activation in Triptolide-Induced Liver Injury. Toxicological Sciences, 2019, 171, 1-12.	1.4	20
311	Withaferin A alleviates fulminant hepatitis by targeting macrophage and NLRP3. Cell Death and Disease, 2021, 12, 174.	2.7	20
312	Control of Steroid 21-oic Acid Synthesis by Peroxisome Proliferator-activated Receptor \hat{l}_{\pm} and Role of the Hypothalamic-Pituitary-Adrenal Axis. Journal of Biological Chemistry, 2010, 285, 7670-7685.	1.6	19
313	Expression and Regulation of Human Fetal-Specific CYP3A7 in Mice. Endocrinology, 2012, 153, 1453-1463.	1.4	19
314	6β-Hydroxytestosterone, a Cytochrome P450 1B1-Testosterone–Metabolite, Mediates Angiotensin Il–Induced Renal Dysfunction in Male Mice. Hypertension, 2016, 67, 916-926.	1.3	19
315	Dual action of peroxisome proliferator-activated receptor alpha in perfluorodecanoic acid-induced hepatotoxicity. Archives of Toxicology, 2017, 91, 897-907.	1.9	19
316	Lysosomal SLC46A3 modulates hepatic cytosolic copper homeostasis. Nature Communications, 2021, 12, 290.	5.8	19
317	Global Metabolomics Reveals Urinary Biomarkers of Breast Cancer in a MCF-7 Xenograft Mouse Model. Metabolites, 2013, 3, 658-672.	1.3	18
318	GC-MS metabolomics on PPARα-dependent exacerbation of colitis. Molecular BioSystems, 2015, 11, 1329-1337.	2.9	18
319	Glutathione deficiency-elicited reprogramming of hepatic metabolism protects against alcohol-induced steatosis. Free Radical Biology and Medicine, 2019, 143, 127-139.	1.3	18
320	Editor's Highlight: Farnesoid X Receptor Protects Against Low-Dose Carbon Tetrachloride-Induced Liver Injury Through the Taurocholate-JNK Pathway. Toxicological Sciences, 2017, 158, 334-346.	1.4	17
321	Targeted Metabolomics Reveals a Protective Role for Basal PPARα in Cholestasis Induced by α-Naphthylisothiocyanate. Journal of Proteome Research, 2018, 17, 1500-1508.	1.8	17
322	Withaferin A Improves Nonalcoholic Steatohepatitis in Mice. Journal of Pharmacology and Experimental Therapeutics, 2019, 371, 360-374.	1.3	17
323	Metabolomics Reveals That Tumor Xenografts Induce Liver Dysfunction. Molecular and Cellular Proteomics, 2013, 12, 2126-2135.	2.5	16
324	Ligand activation of peroxisome proliferator-activated receptor- \hat{l}^2/\hat{l} suppresses liver tumorigenesis in hepatitis B transgenic mice. Toxicology, 2016, 363-364, 1-9.	2.0	16

#	Article	IF	Citations
325	Chemical inhibition and stable knock-down of efflux transporters leads to reduced glucuronidation of wushanicaritin in UGT1A1-overexpressing HeLa cells: the role of breast cancer resistance protein (BCRP) and multidrug resistance-associated proteins (MRPs) in the excretion of glucuronides. Food and Function, 2018, 9, 1410-1423.	2.1	16
326	Metabolic profiling of corylin in vivo and in vitro. Journal of Pharmaceutical and Biomedical Analysis, 2018, 155, 157-168.	1.4	16
327	Hepatic peroxisome proliferatorâ€activated receptor alpha mediates the major metabolic effects of Wyâ€14643. Journal of Gastroenterology and Hepatology (Australia), 2018, 33, 1138-1145.	1.4	16
328	A multiparametric organ toxicity predictor for drug discovery. Toxicology Mechanisms and Methods, 2020, 30, 159-166.	1.3	16
329	Dietary Restriction Suppresses Steatosis-Associated Hepatic Tumorigenesis in Hepatitis C Virus Core Gene Transgenic Mice. Liver Cancer, 2020, 9, 529-548.	4.2	16
330	In Vitro Glucuronidation of Wushanicaritin by Liver Microsomes, Intestine Microsomes and Expressed Human UDP-Glucuronosyltransferase Enzymes. International Journal of Molecular Sciences, 2017, 18, 1983.	1.8	15
331	Nuclear receptors and non-alcoholic fatty liver disease: An update. Liver Research, 2020, 4, 88-93.	0.5	15
332	Animal Models for Human Risk Assessment: The Peroxisome Proliferator-Activated Receptor Alpha-Humanized Mouse. Nutrition Reviews, 2007, 65, 2-6.	2.6	15
333	Gene repression through epigenetic modulation by PPARA enhances hepatocellular proliferation. IScience, 2022, 25, 104196.	1.9	15
334	Metabolomics. Toxicologic Pathology, 2013, 41, 410-418.	0.9	14
335	Chronic ethanol consumption decreases serum sulfatide levels by suppressing hepatic cerebroside sulfotransferase expression in mice. Archives of Toxicology, 2014, 88, 367-379.	1.9	14
336	FXR-Deoxycholic Acid-TNF-α Axis Modulates Acetaminophen-Induced Hepatotoxicity. Toxicological Sciences, 2021, 181, 273-284.	1.4	14
337	Hepatocyte nuclear factors $1\hat{l}\pm$ and $4\hat{l}\pm$ control expression of proline oxidase in adult liver. FEBS Letters, 2004, 578, 63-68.	1.3	13
338	Metabolic mapping of A3 adenosine receptor agonist MRS5980. Biochemical Pharmacology, 2015, 97, 215-223.	2.0	13
339	Fat-specific protein 27 is a novel target gene of liver X receptor α. Molecular and Cellular Endocrinology, 2018, 474, 48-56.	1.6	13
340	A systemic workflow for profiling metabolome and lipidome in tissue. Journal of Chromatography A, 2019, 1589, 105-115.	1.8	13
341	A trans-fatty acid-rich diet promotes liver tumorigenesis in HCV core gene transgenic mice. Carcinogenesis, 2020, 41, 159-170.	1.3	13
342	$6\hat{l}^2$ -Hydroxytestosterone, a metabolite of testosterone generated by CYP1B1, contributes to vascular changes in angiotensin II-induced hypertension in male mice. Biology of Sex Differences, 2020, 11, 4.	1.8	13

#	Article	IF	CITATIONS
343	Feeding-induced resistance to acute lethal sepsis is dependent on hepatic BMAL1 and FXR signalling. Nature Communications, 2021, 12, 2745.	5.8	13
344	Cytochrome P450 1B1 Contributes to the Development of Angiotensin II–Induced Aortic Aneurysm in Male Apoeâ~'/â~' Mice. American Journal of Pathology, 2016, 186, 2204-2219.	1.9	12
345	Lipidomics reveal aryl hydrocarbon receptor (Ahr)-regulated lipid metabolic pathway in alpha-naphthyl isothiocyanate (ANIT)-induced intrahepatic cholestasis. Xenobiotica, 2019, 49, 591-601.	0.5	12
346	The Efflux Mechanism of Fraxetin-O-Glucuronides in UGT1A9-Transfected HeLa Cells: Identification of Multidrug Resistance-Associated Proteins 3 and 4 (MRP3/4) as the Important Contributors. Frontiers in Pharmacology, 2019, 10, 496.	1.6	12
347	PPARα mediates night neon light-induced weight gain: role of lipid homeostasis. Theranostics, 2020, 10, 11497-11506.	4.6	12
348	Targeting Xenobiotic Nuclear Receptors PXR and CAR to Prevent Cobicistat Hepatotoxicity. Toxicological Sciences, 2021, 181, 58-67.	1.4	12
349	Species Differences between Mouse and Human PPARα in Modulating the Hepatocarcinogenic Effects of Perinatal Exposure to a High-Affinity Human PPARα Agonist in Mice. Toxicological Sciences, 2021, 183, 81-92.	1.4	12
350	Feedback repression of PPARα signaling by Let-7 microRNA. Cell Reports, 2021, 36, 109506.	2.9	12
351	Caffeic acid phenethyl ester suppresses intestinal FXR signaling and ameliorates nonalcoholic fatty liver disease by inhibiting bacterial bile salt hydrolase activity. Acta Pharmacologica Sinica, 2023, 44, 145-156.	2.8	12
352	Potential Role of the Vitamin D Receptor in Control of Cholesterol Levels. Gastroenterology, 2014, 146, 899-902.	0.6	11
353	The roles of breast cancer resistance protein (BCRP/ABCG2) and multidrug resistance-associated proteins (MRPs/ABCCs) in the excretion of cycloicaritin-3-O-glucoronide in UGT1A1-overexpressing HeLa cells. Chemico-Biological Interactions, 2018, 296, 45-56.	1.7	11
354	In utero exposure to di(2-ethylhexyl)phthalate suppresses blood glucose and leptin levels in the offspring of wild-type mice. Toxicology, 2019, 415, 49-55.	2.0	11
355	Propranolol is a mechanismâ€based inhibitor of CYP2D and CYP2D6 in humanized CYP2D6â€transgenic mice: Effects on activity and drug responses. British Journal of Pharmacology, 2020, 177, 701-712.	2.7	11
356	Oleuropein-Induced Acceleration of Cytochrome P450–Catalyzed Drug Metabolism: Central Role for Nuclear Receptor Peroxisome Proliferator-Activated Receptor α. Drug Metabolism and Disposition, 2021, 49, 833-843.	1.7	11
357	Cardiomyocyte peroxisome proliferator-activated receptor $\hat{l}\pm$ is essential for energy metabolism and extracellular matrix homeostasis during pressure overload-induced cardiac remodeling. Acta Pharmacologica Sinica, 2022, 43, 1231-1242.	2.8	11
358	Forced expression of fibroblast growth factor 21 reverses the sustained impairment of liver regeneration in hPPARαPAC mice due to dysregulated bile acid synthesis. Oncotarget, 2015, 6, 9686-9700.	0.8	11
359	Regulation profile of phosphatidylcholines (PCs) and lysophosphatidylcholines (LPCs) components towards UDP-glucuronosyltransferases (UGTs) isoforms. Xenobiotica, 2015, 45, 197-206.	0.5	10
360	St. John's Wort Attenuates Colorectal Carcinogenesis in Mice through Suppression of Inflammatory Signaling. Cancer Prevention Research, 2015, 8, 786-795.	0.7	10

#	Article	IF	Citations
361	In vitrometabolic mapping of neobavaisoflavone in human cytochromes P450 and UDP-glucuronosyltransferase enzymes by ultra high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2018, 158, 351-360.	1.4	10
362	Hepatic metabolic adaptation in a murine model of glutathione deficiency. Chemico-Biological Interactions, 2019, 303, 1-6.	1.7	10
363	Investigation on the metabolic characteristics of isobavachin in <i>Psoralea corylifolia</i> L. (Bu-gu-zhi) and its potential inhibition against human cytochrome P450s and UDP-glucuronosyltransferases. Journal of Pharmacy and Pharmacology, 2020, 72, 1865-1878.	1.2	10
364	Crosstalk between CYP2E1 and PPARÎ \pm substrates and agonists modulate adipose browning and obesity. Acta Pharmaceutica Sinica B, 2022, 12, 2224-2238.	5.7	10
365	HNF4A modulates glucocorticoid action in the liver. Cell Reports, 2022, 39, 110697.	2.9	10
366	Human CYP2D6 Is Functional in Brain In Vivo: Evidence from Humanized CYP2D6 Transgenic Mice. Molecular Neurobiology, 2020, 57, 2509-2520.	1.9	9
367	St. Johnâ∈™s Wort alleviates dextran sodium sulfateâ€induced colitis through pregnane X receptorâ€dependent NFκB antagonism. FASEB Journal, 2021, 35, e21968.	0.2	9
368	Animal Models for Human Risk Assessment: The Peroxisome Proliferator-Activated Receptor Alpha-Humanized Mouse. Nutrition Reviews, 2007, 65, S2-S6.	2.6	8
369	PPARα-independent action against metabolic syndrome development by fibrates is mediated by inhibition of STAT3 signalling. Journal of Pharmacy and Pharmacology, 2018, 70, 1630-1642.	1.2	8
370	Efflux excretion of bisdemethoxycurcuminâ€Oâ€glucuronide in UGT1A1â€overexpressing HeLa cells: Identification of breast cancer resistance protein (BCRP) and multidrug resistanceâ€associated proteins 1 (MRP1) as the glucuronide transporters. BioFactors, 2018, 44, 558-569.	2.6	8
371	Diminished Hepatocarcinogenesis by a Potent, High-Affinity Human PPARα Agonist in <i>PPARA</i> -Humanized Mice. Toxicological Sciences, 2021, 183, 70-80.	1.4	8
372	Withaferin A in the treatment of liver diseases: progress and pharmacokinetic insights. Drug Metabolism and Disposition, 2021, , DMD-MR-2021-000455.	1.7	8
373	Insulin Represses Fasting-Induced Expression of Hepatic Fat-Specific Protein 27. Biological and Pharmaceutical Bulletin, 2017, 40, 888-893.	0.6	7
374	Metabolism and disposition of corylifol A from <i>Psoralea corylifolia</i> isozyme contribution, species differences and identification of efflux transporters for corylifol A- <i>O</i> i>Osliv-glucuronide in HeLa1A1 cells. Xenobiotica, 2020, 50, 997-1008.	0.5	7
375	Mutant <i>Idh2</i> Cooperates with a <i>NUP98-HOXD13</i> Fusion to Induce Early Immature Thymocyte Precursor ALL. Cancer Research, 2021, 81, 5033-5046.	0.4	7
376	Hepatic sirtuin 1 is dispensable for fibrate-induced peroxisome proliferator-activated receptor- \hat{l}_{\pm} function in vivo. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E824-E837.	1.8	6
377	PPARÎ \pm activation drives demethylation of the CpG islands of the Gadd45b promoter in the mouse liver. Biochemical and Biophysical Research Communications, 2016, 476, 293-298.	1.0	6
378	Cytochrome P450 1B1 Is Critical for Neointimal Growth in Wireâ€Injured Carotid Artery of Male Mice. Journal of the American Heart Association, 2018, 7, e010065.	1.6	6

#	Article	IF	Citations
379	Testosterone Metabolite 6βâ€Hydroxytestosterone Contributes to Angiotensin IIâ€Induced Abdominal Aortic Aneurysms in <i>Apoe ^{–/–} </i> Male Mice. Journal of the American Heart Association, 2021, 10, e018536.	1.6	6
380	The role of mouse and human peroxisome proliferator-activated receptor- $\hat{l}\pm$ in modulating the hepatic effects of perfluorooctane sulfonate in mice. Toxicology, 2022, 465, 153056.	2.0	6
381	Withaferin A alleviates ethanol-induced liver injury by inhibiting hepatic lipogenesis. Food and Chemical Toxicology, 2022, 160, 112807.	1.8	6
382	Human CYP2D6 in the Brain Is Protective Against Harmine-Induced Neurotoxicity: Evidence from Humanized CYP2D6 Transgenic Mice. Molecular Neurobiology, 2020, 57, 4608-4621.	1.9	5
383	Metabolic map of the antiviral drug podophyllotoxin provides insights into hepatotoxicity. Xenobiotica, 2021, 51, 1047-1059.	0.5	5
384	Mechanism of the efflux transport of demethoxycurcumin-O-glucuronides in HeLa cells stably transfected with UDP-glucuronosyltransferase 1A1. PLoS ONE, 2019, 14, e0217695.	1.1	4
385	Hepatic Aryl hydrocarbon Receptor Nuclear Translocator (ARNT) regulates metabolism in mice. PLoS ONE, 2017, 12, e0186543.	1.1	4
386	Nuclear Receptor PPARÎ \pm Agonist Wy-14,643 Ameliorates Hepatic Cell Death in Hepatic IKKÎ 2 -Deficient Mice. Biomolecules and Therapeutics, 2017, 25, 504-510.	1.1	4
387	Creatine riboside is a cancer cellâ \in derived metabolite associated with arginine auxotrophy. Journal of Clinical Investigation, 2022, 132, .	3.9	4
388	A Western diet-induced mouse model reveals a possible mechanism by which metformin decreases obesity. European Journal of Clinical Pharmacology, 2017, 73, 1337-1339.	0.8	3
389	The concomitant loss of <scp>APC</scp> and <scp>HNF</scp> 4α in adult hepatocytes does not contribute to hepatocarcinogenesis driven by βâ€catenin activation. Liver International, 2019, 39, 727-739.	1.9	3
390	Novel Strategy for Mining and Identification of Acylcarnitines Using Data-Independent-Acquisition-Based Retention Time Prediction Modeling and Pseudo-Characteristic Fragmentation Ion Matching. Journal of Proteome Research, 2021, 20, 1602-1611.	1.8	3
391	Disruption of peroxisome proliferator-activated receptor $\hat{l}\pm$ in hepatocytes protects against acetaminophen-induced liver injury by activating the IL-6/STAT3 pathway. International Journal of Biological Sciences, 2022, 18, 2317-2328.	2.6	3
392	Deficiency of peroxisome proliferator-activated receptor \hat{l}_{\pm} attenuates apoptosis and promotes migration of vascular smooth muscle cells. Biochemistry and Biophysics Reports, 2021, 27, 101091.	0.7	2
393	Intestinal farnesoid X receptor signaling controls hepatic fatty acid oxidation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2022, 1867, 159089.	1.2	2
394	Reply:. Hepatology, 2012, 56, 2009-2009.	3.6	1
395	Manassantin B attenuates obesity by inhibiting adipogenesis and lipogenesis in an AMPK dependent manner. FASEB Journal, 2021, 35, e21496.	0.2	1
396	$6\hat{l}^2$ -Hydroxytestosterone Promotes Angiotensin II-Induced Hypertension via Enhanced Cytosolic Phospholipase A $\langle sub \rangle 2 \langle sub \rangle \hat{l}_\pm$ Activity. Hypertension, 2021, 78, 1053-1066.	1.3	0

#	Article	IF	CITATIONS
397	Activation of PPARα Stimulates Hippocampal Neurogenesis. SSRN Electronic Journal, 0, , .	0.4	0