Juan Carlos Acosta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6218860/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>In Vivo</i> Modeling of Patient Genetic Heterogeneity Identifies New Ways to Target Cholangiocarcinoma. Cancer Research, 2022, 82, 1548-1559.	0.9	8
2	Cytoplasmic innate immune sensing by the caspase-4 non-canonical inflammasome promotes cellular senescence. Cell Death and Differentiation, 2022, 29, 1267-1282.	11.2	14
3	A sensitive and affordable multiplex RT-qPCR assay for SARS-CoV-2 detection. PLoS Biology, 2020, 18, e3001030.	5.6	32
4	Nuclear pore density controls heterochromatin reorganization during senescence. Genes and Development, 2019, 33, 144-149.	5.9	73
5	Inhibition of the 60S ribosome biogenesis GTPase LSG1 causes endoplasmic reticular disruption and cellular senescence. Aging Cell, 2019, 18, e12981.	6.7	17
6	The innate immune sensor Toll-like receptor 2 controls the senescence-associated secretory phenotype. Science Advances, 2019, 5, eaaw0254.	10.3	93
7	Notch Signaling Mediates Secondary Senescence. Cell Reports, 2019, 27, 997-1007.e5.	6.4	82
8	Myc stimulates cell cycle progression through the activation of Cdk1 and phosphorylation of p27. Scientific Reports, 2019, 9, 18693.	3.3	40
9	Measuring the Inflammasome in Oncogene-Induced Senescence. Methods in Molecular Biology, 2019, 1896, 57-70.	0.9	5
10	Paracrine cellular senescence exacerbates biliary injury and impairs regeneration. Nature Communications, 2018, 9, 1020.	12.8	105
11	PHD3 Regulates p53 Protein Stability by Hydroxylating Proline 359. Cell Reports, 2018, 24, 1316-1329.	6.4	51
12	An adaptive signaling network in melanoma inflammatory niches confers tolerance to MAPK signaling inhibition. Journal of Experimental Medicine, 2017, 214, 1691-1710.	8.5	71
13	Detecting the Senescence-Associated Secretory Phenotype (SASP) by High Content Microscopy Analysis. Methods in Molecular Biology, 2017, 1534, 99-109.	0.9	11
14	Condensin II mutation causes T-cell lymphoma through tissue-specific genome instability. Genes and Development, 2016, 30, 2173-2186.	5.9	41
15	Suppression of autophagy impedes glioblastoma development and induces senescence. Autophagy, 2016, 12, 1431-1439.	9.1	89
16	MGMT Expression Predicts PARP-Mediated Resistance to Temozolomide. Molecular Cancer Therapeutics, 2015, 14, 1236-1246.	4.1	36
17	mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nature Cell Biology, 2015, 17, 1205-1217.	10.3	552
18	High p27 protein levels in chronic lymphocytic leukemia are associated to low Myc and Skp2 expression, confer resistance to apoptosis and antagonize Myc effects on cell cycle. Oncotarget, 2014, 5, 4694-4708.	1.8	22

JUAN CARLOS ACOSTA

#	Article	IF	CITATIONS
19	A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nature Cell Biology, 2013, 15, 978-990.	10.3	1,566
20	Unbiased Characterization of the Senescence-Associated Secretome Using SILAC-Based Quantitative Proteomics. Methods in Molecular Biology, 2013, 965, 175-184.	0.9	13
21	Senescence: a new weapon for cancer therapy. Trends in Cell Biology, 2012, 22, 211-219.	7.9	193
22	SKP2 Oncogene Is a Direct MYC Target Gene and MYC Down-regulates p27KIP1 through SKP2 in Human Leukemia Cells. Journal of Biological Chemistry, 2011, 286, 9815-9825.	3.4	79
23	Premature Senescence in Cells From Patients With Autosomal Recessive Hypercholesterolemia (ARH). Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2270-2277.	2.4	8
24	MYC in Chronic Myeloid Leukemia: Induction of Aberrant DNA Synthesis and Association with Poor Response to Imatinib. Molecular Cancer Research, 2011, 9, 564-576.	3.4	54
25	Histone demethylase JMJD3 contributes to epigenetic control of <i>INK4a/ARF</i> by oncogenic RAS. Genes and Development, 2009, 23, 1177-1182.	5.9	318
26	A Role for CXCR2 in Senescence, but What about in Cancer?. Cancer Research, 2009, 69, 2167-2170.	0.9	73
27	Inhibition of cell differentiation: A critical mechanism for MYC-mediated carcinogenesis?. Cell Cycle, 2009, 8, 1148-1157.	2.6	54
28	Senescence impairs successful reprogramming to pluripotent stem cells. Genes and Development, 2009, 23, 2134-2139.	5.9	553
29	Chemokine Signaling via the CXCR2 Receptor Reinforces Senescence. Cell, 2008, 133, 1006-1018.	28.9	1,446
30	Myc Inhibits p27-Induced Erythroid Differentiation of Leukemia Cells by Repressing Erythroid Master Genes without Reversing p27-Mediated Cell Cycle Arrest. Molecular and Cellular Biology, 2008, 28, 7286-7295.	2.3	53
31	Control of senescence by CXCR2 and its ligands. Cell Cycle, 2008, 7, 2956-2959.	2.6	86
32	Inhibitory effect of c-Myc on p53-induced apoptosis in leukemia cells. Microarray analysis reveals defective induction of p53 target genes and upregulation of chaperone genes. Oncogene, 2005, 24, 4559-4571.	5.9	43
33	p21Cip1 and p27Kip1 Induce Distinct Cell Cycle Effects and Differentiation Programs in Myeloid Leukemia Cells. Journal of Biological Chemistry, 2005, 280, 18120-18129.	3.4	81
34	New 7-aryl analogues of anthracyclines: Synthesis and cytotoxic activity of (±)-7-(3,4,5-trimethoxyphenyl)-7-deoxyidarubicinone. Bioorganic and Medicinal Chemistry Letters, 1997, 7, 2955-2958.	2.2	7