
Muhan Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6218371/publications.pdf Version: 2024-02-01

Μυμανι Cao

#	Article	IF	CITATIONS
1	Collective Plasmon Coupling in Gold Nanoparticle Clusters for Highly Efficient Photothermal Therapy. ACS Nano, 2022, 16, 910-920.	14.6	65
2	Interfacial Manganeseâ€Đoping in CsPbBr ₃ Nanoplatelets by Employing a Molecular Shuttle. Angewandte Chemie - International Edition, 2022, 61, .	13.8	25
3	Synergistic combination of Pd nanosheets and porous Bi(OH)3 boosts activity and durability for ethanol oxidation reaction. Nano Research, 2022, 15, 3920-3926.	10.4	28
4	Interfacial Manganeseâ€Doping in CsPbBr ₃ Nanoplatelets by Employing a Molecular Shuttle. Angewandte Chemie, 2022, 134, .	2.0	2
5	Ultra‣table CsPbX ₃ @Pyrophosphate Nanoparticles in Water over One Year. Small, 2022, 18, e2107548.	10.0	20
6	Efficient Interfacial Synthesis Strategy for Perovskite CsPbBr ₃ Nanorods in the Biphase Solution. Advanced Materials Technologies, 2022, 7, .	5.8	5
7	Kineticsâ€Controlled Interfacial Synthesis of Janus and Patchy Heterostructures Based on Perovskite Nanocrystals. Advanced Optical Materials, 2022, 10, .	7.3	4
8	Fabricating MAPbl ₃ /MoS ₂ Composites for Improved Photocatalytic Performance. Nano Letters, 2021, 21, 597-604.	9.1	60
9	Highly Stable CsPbX ₃ /PbSO ₄ Core/Shell Nanocrystals Synthesized by a Simple Postâ€Treatment Strategy. Advanced Optical Materials, 2021, 9, 2001763.	7.3	30
10	Recent advances and perspective on heterogeneous catalysis using metals and oxide nanocrystals. Materials Chemistry Frontiers, 2021, 5, 151-222.	5.9	18
11	Improved photophysical properties and durability of CsPbBr ₃ NCs endowed by inorganic oxoacid and bromide ions. Nanoscale, 2021, 13, 9634-9640.	5.6	3
12	Highly Stable CsPbBr ₃ Colloidal Nanocrystal Clusters as Photocatalysts in Polar Solvents. ACS Applied Materials & Interfaces, 2021, 13, 4017-4025.	8.0	31
13	Reversible transformation of all-inorganic copper halide perovskite nanocrystals for anti-counterfeiting. Dalton Transactions, 2021, 50, 12826-12830.	3.3	14
14	Perovskite Nanocrystals: Synthesis, Stability, and Optoelectronic Applications. Small Structures, 2021, 2, 2000124.	12.0	53
15	Recent advances and perspective on the synthesis and photocatalytic application of metal halide perovskite nanocrystals. Nano Research, 2021, 14, 3773-3794.	10.4	27
16	Strong metal–support interaction between palladium and gallium oxide within monodisperse nanoparticles: self-supported catalysts for propyne semi-hydrogenation. Journal of Catalysis, 2021, 395, 36-45.	6.2	21
17	Regulating the Interfacial Synergy of Ni/Ga ₂ O ₃ for CO ₂ Hydrogenation toward the Reverse Water–Gas Shift Reaction. Industrial & Engineering Chemistry Research, 2021, 60, 9448-9455.	3.7	21
18	The Impact of Precursor Ratio on the Synthetic Production, Surface Chemistry, and Photovoltaic Performance of CsPbI ₃ Perovskite Quantum Dots. Solar Rrl, 2021, 5, 2100090.	5.8	17

Минал Сао

#	Article	IF	CITATIONS
19	State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano, 2021, 15, 10775-10981.	14.6	705
20	Stabilizing Oxygen Vacancies in ZrO ₂ by Ga ₂ O ₃ Boosts the Direct Dehydrogenation of Light Alkanes. ACS Catalysis, 2021, 11, 10159-10169.	11.2	9
21	Construction of Single-Atom Platinum Catalysts Enabled by CsPbBr ₃ Nanocrystals. ACS Nano, 2021, 15, 13129-13139.	14.6	44
22	One-pot reprecipitation strategy to synthesize CsPbX ₃ /Pb ₃ (PO ₄) ₂ composite nanocrystals. Journal of Materials Chemistry C, 2021, 9, 466-471.	5.5	9
23	Regulation of surface carbides on palladium nanocubes with zeolitic imidazolate frameworks for propyne selective hydrogenation. Nano Research, 2021, 14, 1559-1564.	10.4	5
24	Encapsulation of lead halide perovskite nanocrystals (NCs) at the single-particle level: strategies and properties. Nanoscale, 2021, 13, 19341-19351.	5.6	13
25	Porous Pt nanoframes decorated with Bi(OH)3 as highly efficient and stable electrocatalyst for ethanol oxidation reaction. Nano Research, 2020, 13, 265-272.	10.4	45
26	Revealing the Correlation between Catalytic Selectivity and the Local Coordination Environment of Pt Single Atom. Nano Letters, 2020, 20, 6865-6872.	9.1	42
27	Interfacial engineering of noble metals for electrocatalytic methanol and ethanol oxidation. Journal of Materials Chemistry A, 2020, 8, 15445-15457.	10.3	103
28	Imaging the kinetics of anisotropic dissolution of bimetallic core–shell nanocubes using graphene liquid cells. Nature Communications, 2020, 11, 3041.	12.8	36
29	Facile one-step synthesis of PdPb nanochains for high-performance electrocatalytic ethanol oxidation. Rare Metals, 2020, 39, 792-799.	7.1	30
30	Hydrochromic CsPbBr ₃ Nanocrystals for Anti ounterfeiting. Angewandte Chemie - International Edition, 2020, 59, 14527-14532.	13.8	190
31	Hydrochromic CsPbBr ₃ Nanocrystals for Anti ounterfeiting. Angewandte Chemie, 2020, 132, 14635-14640.	2.0	18
32	Lowâ€Dimensionalâ€Networked Cesium Lead Halide Perovskites: Properties, Fabrication, and Applications. Small Methods, 2020, 4, 2000303.	8.6	38
33	Revealing the Active Sites of Pd Nanocrystals for Propyne Semihydrogenation: From Theory to Experiment. ACS Catalysis, 2019, 9, 8471-8480.	11.2	22
34	Photoreversible luminescence switching of CsPbl ₃ nanocrystals sensitized by photochromic AgI nanocrystals. Nanoscale, 2019, 11, 3193-3199.	5.6	24
35	All-inorganic cesium lead halide perovskite nanocrystals: synthesis, surface engineering and applications. Journal of Materials Chemistry C, 2019, 7, 757-789.	5.5	193
36	Bi(OH) ₃ /PdBi Composite Nanochains as Highly Active and Durable Electrocatalysts for Ethanol Oxidation. Nano Letters, 2019, 19, 4752-4759.	9.1	99

Μυμαν ζαο

#	Article	IF	CITATIONS
37	L-Type Ligand-Assisted Acid-Free Synthesis of CsPbBr ₃ Nanocrystals with Near-Unity Photoluminescence Quantum Yield and High Stability. Nano Letters, 2019, 19, 4151-4157.	9.1	177
38	Fabricating CsPbX ₃ -Based Type I and Type II Heterostructures by Tuning the Halide Composition of Janus CsPbX ₃ /ZrO ₂ Nanocrystals. ACS Nano, 2019, 13, 5366-5374.	14.6	147
39	An etching–redeposition isomerization process for the shape control of anatase TiO2 nanocrystals. Materials Chemistry Frontiers, 2019, 3, 874-880.	5.9	3
40	Interfacial Synthesis of Monodisperse CsPbBr ₃ Nanorods with Tunable Aspect Ratio and Clean Surface for Efficient Light-Emitting Diode Applications. Chemistry of Materials, 2019, 31, 1575-1583.	6.7	78
41	Recent advances and perspectives on light emitting diodes fabricated from halide metal perovskite nanocrystals. Journal of Materials Chemistry C, 2019, 7, 14412-14440.	5.5	29
42	Solvothermal synthesis of cesium lead halide nanocrystals with controllable dimensions: a stoichiometry defined growth mechanism. Journal of Materials Chemistry C, 2019, 7, 14493-14498.	5.5	23
43	Consecutive Interfacial Transformation of Cesium Lead Halide Nanocubes to Ultrathin Nanowires with Improved Stability. ACS Applied Materials & amp; Interfaces, 2019, 11, 3351-3359.	8.0	27
44	Intermetallic PtBi core/ultrathin Pt shell nanoplates for efficient and stable methanol and ethanol electro-oxidization. Nano Research, 2019, 12, 429-436.	10.4	76
45	Facetâ€Selective Deposition of Metal (M=Au, Pt, Pd) Nanoparticles on Co ₃ O ₄ Crystals: Magnetically Separable Photocatalyst with Improved Catalytic Performance. ChemPlusChem, 2018, 83, 334-338.	2.8	11
46	Solvothermal Synthesis of Alloyed PtNi Colloidal Nanocrystal Clusters (CNCs) with Enhanced Catalytic Activity for Methanol Oxidation. Advanced Functional Materials, 2018, 28, 1704774.	14.9	126
47	Fully Alloying AuAg Nanorods in a Photothermal Nano-Oven: Superior Plasmonic Property and Enhanced Chemical Stability. ACS Omega, 2018, 3, 18623-18629.	3.5	10
48	Controlled growth of dodecapod-branched CsPbBr3 nanocrystals and their application in white light emitting diodes. Nano Energy, 2018, 53, 559-566.	16.0	45
49	Sintering-Resistant Pt on Ga ₂ O ₃ Rods for Propane Dehydrogenation: The Morphology Matters. Industrial & Engineering Chemistry Research, 2018, 57, 13087-13093.	3.7	27
50	Colloidal Synthesis of Au@Pd Core–Shell Nanorods with Tunable Dimensions and Enhanced Electrocatalytic Activities. Topics in Catalysis, 2018, 61, 949-957.	2.8	3
51	One-Pot Synthesis of Highly Stable CsPbBr ₃ @SiO ₂ Core–Shell Nanoparticles. ACS Nano, 2018, 12, 8579-8587.	14.6	447
52	Cooperative interactions among CTA+, Br– and Ag+ during seeded growth of gold nanorods. Nano Research, 2017, 10, 2146-2155.	10.4	25
53	Improving the Stability and Size Tunability of Cesium Lead Halide Perovskite Nanocrystals Using Trioctylphosphine Oxide as the Capping Ligand. Langmuir, 2017, 33, 12689-12696.	3.5	165
54	The Synergy between Metal Facet and Oxide Support Facet for Enhanced Catalytic Performance: The Case of Pd–TiO ₂ . Nano Letters, 2016, 16, 5298-5302.	9.1	69