Jonathan Chee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6217175/publications.pdf

Version: 2024-02-01

687363 580821 31 689 13 25 citations h-index g-index papers 32 32 32 1316 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Interferons limit autoantigen-specific CD8+ T-cell expansion in the non-obese diabetic mouse. Cell Reports, 2022, 39, 110747.	6.4	3
2	Comprehensive Testing of Chemotherapy and Immune Checkpoint Blockade in Preclinical Cancer Models Identifies Additive Combinations. Frontiers in Immunology, 2022, 13 , .	4.8	3
3	Tolerance to Proinsulin-1 Reduces Autoimmune Diabetes in NOD Mice. Frontiers in Immunology, 2021, 12, 645817.	4.8	2
4	Malignant Pleural Effusions—A Window Into Local Anti-Tumor T Cell Immunity?. Frontiers in Oncology, 2021, 11, 672747.	2.8	9
5	Tumour draining lymph node-generated CD8 T cells play a role in controlling lung metastases after a primary tumour is removed but not when adjuvant immunotherapy is used. Cancer Immunology, Immunotherapy, 2021, 70, 3249-3258.	4.2	14
6	Reprogramming the anti-tumor immune response via CRISPR genetic and epigenetic editing. Molecular Therapy - Methods and Clinical Development, 2021, 21, 592-606.	4.1	11
7	Characterization of neoantigen-specific T cells in cancer resistant to immune checkpoint therapies. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	30
8	Dynamic changes in the T cell receptor repertoire during treatment with radiotherapy combined with an immune checkpoint inhibitor. Molecular Oncology, 2021, 15, 2958-2968.	4.6	5
9	Impaired T cell proliferation by ex vivo BET-inhibition impedes adoptive immunotherapy in a murine melanoma model. Epigenetics, 2020, 15, 134-144.	2.7	10
10	Tumor Infiltrating Effector Memory Antigen-Specific CD8+ T Cells Predict Response to Immune Checkpoint Therapy. Frontiers in Immunology, 2020, 11, 584423.	4.8	39
11	Characteristics of TCR Repertoire Associated With Successful Immune Checkpoint Therapy Responses. Frontiers in Immunology, 2020, 11, 587014.	4.8	56
12	Pre-treatment tumor neo-antigen responses in draining lymph nodes are infrequent but predict checkpoint blockade therapy outcome. Oncolmmunology, 2020, 9, 1684714.	4.6	12
13	Acquired resistance during adoptive cell therapy by transcriptional silencing of immunogenic antigens. Oncolmmunology, 2019, 8, 1609874.	4.6	13
14	Neo-antigen specific T cell responses indicate the presence of metastases before imaging. Scientific Reports, 2019, 9, 14640.	3.3	3
15	Soluble FAS ligand is not required for pancreatic islet inflammation or beta-cell destruction in non-obese diabetic mice. Cell Death Discovery, 2019, 5, 136.	4.7	7
16	Tumour associated lymphocytes in the pleural effusions of patients with mesothelioma express high levels of inhibitory receptors. BMC Research Notes, 2018, 11, 864.	1.4	7
17	Combination immune checkpoint blockade as an effective therapy for mesothelioma. Oncolmmunology, 2018, 7, e1494111.	4.6	37
18	Transient Treg depletion enhances therapeutic antiâ€cancer vaccination. Immunity, Inflammation and Disease, 2017, 5, 16-28.	2.7	33

#	Article	IF	CITATIONS
19	Granzyme A Deficiency Breaks Immune Tolerance and Promotes Autoimmune Diabetes Through a Type I Interferon–Dependent Pathway. Diabetes, 2017, 66, 3041-3050.	0.6	17
20	Immunotherapy for Lung Malignancies. Chest, 2017, 151, 891-897.	0.8	17
21	Analysis of antigen specific T cells in diabetes – Lessons from pre-clinical studies and early clinical trials. Journal of Autoimmunity, 2016, 71, 35-43.	6.5	15
22	Perinatal tolerance to proinsulin is sufficient to prevent autoimmune diabetes. JCI Insight, 2016, 1, e86065.	5.0	14
23	BIM Deficiency Protects NOD Mice From Diabetes by Diverting Thymocytes to Regulatory T Cells. Diabetes, 2015, 64, 3229-3238.	0.6	13
24	Effector-Memory T Cells Develop in Islets and Report Islet Pathology in Type 1 Diabetes. Journal of Immunology, 2014, 192, 572-580.	0.8	52
25	Functional cytotoxic T lymphocytes against IGRP 206â€214 predict diabetes in the nonâ€obese diabetic mouse. Immunology and Cell Biology, 2014, 92, 640-644.	2.3	13
26	Proinflammatory cytokines contribute to development and function of regulatory T cells in type 1 diabetes. Annals of the New York Academy of Sciences, 2013, 1283, 81-86.	3.8	26
27	Multicenter Australian Trial of Islet Transplantation: Improving Accessibility and Outcomes. American Journal of Transplantation, 2013, 13, 1850-1858.	4.7	99
28	Complete Diabetes Protection Despite Delayed Thymic Tolerance in NOD8.3 TCR Transgenic Mice Due to Antigen-Induced Extrathymic Deletion of T Cells. Diabetes, 2012, 61, 425-435.	0.6	13
29	Expression of Pro- and Antiapoptotic Molecules of the Bcl-2 Family in Human Islets Postisolation. Cell Transplantation, 2012, 21, 49-60.	2.5	22
30	Pathogenic Mechanisms in Type 1 Diabetes: The Islet is Both Target and Driver of Disease. Review of Diabetic Studies, 2012, 9, 148-168.	1.3	55
31	TNF Receptor 1 Deficiency Increases Regulatory T Cell Function in Nonobese Diabetic Mice. Journal of Immunology, 2011, 187, 1702-1712.	0.8	39