David W T Griffith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6217136/publications.pdf

Version: 2024-02-01

151 papers 11,307 citations

38742 50 h-index 95

g-index

241 all docs

241 docs citations

times ranked

241

6639 citing authors

#	Article	IF	Citations
1	The Total Carbon Column Observing Network. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 2087-2112.	3.4	884
2	Calibration of the Total Carbon Column Observing Network using aircraft profile data. Atmospheric Measurement Techniques, 2010, 3, 1351-1362.	3.1	441
3	Open-path Fourier transform infrared studies of large-scale laboratory biomass fires. Journal of Geophysical Research, 1996, 101, 21067-21080.	3.3	340
4	Synthetic Calibration and Quantitative Analysis of Gas-Phase FT-IR Spectra. Applied Spectroscopy, 1996, 50, 59-70.	2.2	333
5	Emissions from smoldering combustion of biomass measured by open-path Fourier transform infrared spectroscopy. Journal of Geophysical Research, 1997, 102, 18865-18877.	3.3	314
6	Emissions of formaldehyde, acetic acid, methanol, and other trace gases from biomass fires in North Carolina measured by airborne Fourier transform infrared spectroscopy. Journal of Geophysical Research, 1999, 104, 30109-30125.	3.3	291
7	A method for evaluating bias in global measurements of CO ₂ total columns from space. Atmospheric Chemistry and Physics, 2011, 11, 12317-12337.	4.9	279
8	Importance of secondary sources in the atmospheric budgets of formic and acetic acids. Atmospheric Chemistry and Physics, 2011, 11, 1989-2013.	4.9	266
9	Coupling field and laboratory measurements to estimate the emission factors of identified and unidentified trace gases for prescribed fires. Atmospheric Chemistry and Physics, 2013, 13, 89-116.	4.9	266
10	Improvement of the retrieval algorithm for GOSAT SWIR XCO ₂ and XCH ₄ and their validation using TCCON data. Atmospheric Measurement Techniques, 2013, 6, 1533-1547.	3.1	261
11	Comparisons of the Orbiting Carbon Observatory-2 (OCO-2) <i>X</i> _{CO₂&ar measurements with TCCON. Atmospheric Measurement Techniques, 2017, 10, 2209-2238.}	np; \;; sub&	kar a p ; gt;
12	Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data. Atmospheric Chemistry and Physics, 2015, 15, 7049-7069.	4.9	225
13	Laboratory measurements of trace gas emissions from biomass burning of fuel types from the southeastern and southwestern United States. Atmospheric Chemistry and Physics, 2010, 10, 11115-11130.	4.9	218
14	Preliminary validation of column-averaged volume mixing ratios of carbon dioxide and methane retrieved from GOSAT short-wavelength infrared spectra. Atmospheric Measurement Techniques, 2011, 4, 1061-1076.	3.1	217
15	The Tropical Forest and Fire Emissions Experiment: overview and airborne fire emission factor measurements. Atmospheric Chemistry and Physics, 2007, 7, 5175-5196.	4.9	212
16	Methane observations from the Greenhouse Gases Observing SATellite: Comparison to groundâ€based TCCON data and model calculations. Geophysical Research Letters, 2011, 38, .	4.0	211
17	Daily and 3-hourly variability in global fire emissions and consequences for atmospheric model predictions of carbon monoxide. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	200
18	Trace gas emissions from combustion of peat, crop residue, domestic biofuels, grasses, and other fuels: configuration and Fourier transform infrared (FTIR) component of the fourth Fire Lab at Missoula Experiment (FLAME-4). Atmospheric Chemistry and Physics, 2014, 14, 9727-9754.	4.9	188

#	Article	IF	CITATIONS
19	Improved retrievals of carbon dioxide from Orbiting Carbon Observatory-2 with the version 8 ACOS algorithm. Atmospheric Measurement Techniques, 2018, 11, 6539-6576.	3.1	188
20	Satellite evidence for a large source of formic acid from boreal and tropical forests. Nature Geoscience, 2012, 5, 26-30.	12.9	171
21	Measurements of reactive trace gases and variable O ₃ formation rates in some South Carolina biomass burning plumes. Atmospheric Chemistry and Physics, 2013, 13, 1141-1165.	4.9	170
22	Trace gas emissions from biomass burning in tropical Australian savannas. Journal of Geophysical Research, 1994, 99, 16441.	3.3	169
23	A Fourier transform infrared trace gas and isotope analyser for atmospheric applications. Atmospheric Measurement Techniques, 2012, 5, 2481-2498.	3.1	161
24	Retrieval of atmospheric CO ₂ with enhanced accuracy and precision from SCIAMACHY: Validation with FTS measurements and comparison with model results. Journal of Geophysical Research, 2011, 116, .	3.3	153
25	Precision Trace Gas Analysis by FT-IR Spectroscopy. 1. Simultaneous Analysis of CO2, CH4, N2O, and CO in Air. Analytical Chemistry, 2000, 72, 206-215.	6.5	148
26	Airborne and ground-based measurements of the trace gases and particles emitted by prescribed fires in the United States. Atmospheric Chemistry and Physics, 2011, 11, 12197-12216.	4.9	140
27	Total column CO ₂ measurements at Darwin, Australia – site description and calibration against in situ aircraft profiles. Atmospheric Measurement Techniques, 2010, 3, 947-958.	3.1	131
28	Methane retrievals from Greenhouse Gases Observing Satellite (GOSAT) shortwave infrared measurements: Performance comparison of proxy and physics retrieval algorithms. Journal of Geophysical Research, 2012, 117, .	3.3	128
29	Inferring regional sources and sinks of atmospheric CO ₂ from GOSAT XCO ₂ data. Atmospheric Chemistry and Physics, 2014, 14, 3703-3727.	4.9	120
30	Recent Northern Hemisphere stratospheric HCl increase due to atmospheric circulation changes. Nature, 2014, 515, 104-107.	27.8	110
31	CO measurements from the ACE-FTS satellite instrument: data analysis and validation using ground-based, airborne and spaceborne observations. Atmospheric Chemistry and Physics, 2008, 8, 2569-2594.	4.9	107
32	Measurements of trace gases emitted by Australian savanna fires during the 1990 dry season. Journal of Atmospheric Chemistry, 1994, 18, 33-56.	3.2	105
33	Aerosol optical properties and trace gas emissions by PAX and OP-FTIR for laboratory-simulated western US wildfires during FIREX. Atmospheric Chemistry and Physics, 2018, 18, 2929-2948.	4.9	103
34	Precision Trace Gas Analysis by FT-IR Spectroscopy. 2. The 13C/12C Isotope Ratio of CO2. Analytical Chemistry, 2000, 72, 216-221.	6.5	92
35	Long-term trends of inorganic chlorine from ground-based infrared solar spectra: Past increases and evidence for stabilization. Journal of Geophysical Research, 2003, 108, .	3.3	86
36	Atmospheric greenhouse gases retrieved from SCIAMACHY: comparison to ground-based FTS measurements and model results. Atmospheric Chemistry and Physics, 2012, 12, 1527-1540.	4.9	86

#	Article	IF	CITATIONS
37	An infrared spectral database for detection of gases emitted by biomass burning. Vibrational Spectroscopy, 2010, 53, 97-102.	2.2	83
38	Field measurements of trace gases emitted by prescribed fires in southeastern US pine forests using an open-path FTIR system. Atmospheric Chemistry and Physics, 2014, 14, 199-215.	4.9	81
39	Absolute accuracy and sensitivity analysis of OP-FTIR retrievals of CO ₂ and CO over concentrations representative of "clean air" and "polluted plumes&ouot:. Atmospheric Measurement Techniques. 2011. 4. 97-116.	3.1	77
40	Validation of ACE-FTS N ₂ O measurements. Atmospheric Chemistry and Physics, 2008, 8, 4759-4786.	4.9	76
41	Measurements of trace gas emissions from Australian forest fires and correlations with coincident measurements of aerosol optical depth. Journal of Geophysical Research, 2005, 110, .	3.3	72
42	Observed and simulated time evolution of HCl, ClONO ₂ , and HF total column abundances. Atmospheric Chemistry and Physics, 2012, 12, 3527-3556.	4.9	72
43	A scientific algorithm to simultaneously retrieve carbon monoxide and methane from TROPOMI onboard Sentinel-5 Precursor. Atmospheric Measurement Techniques, 2019, 12, 6771-6802.	3.1	71
44	Ubiquitous atmospheric production of organic acids mediated by cloud droplets. Nature, 2021, 593, 233-237.	27.8	71
45	Ground-based remote sensing of tropospheric water vapour isotopologues within the project MUSICA. Atmospheric Measurement Techniques, 2012, 5, 3007-3027.	3.1	69
46	Assessing 5 years of GOSAT Proxy XCH ₄ data and associated uncertainties. Atmospheric Measurement Techniques, 2015, 8, 4785-4801.	3.1	64
47	The tropical forest and fire emissions experiment: Trace gases emitted by smoldering logs and dung from deforestation and pasture fires in Brazil. Journal of Geophysical Research, 2007, 112, .	3.3	61
48	New emission factors for Australian vegetation fires measured using open-path Fourier transform infrared spectroscopy – Part 1: Methods and Australian temperate forest fires. Atmospheric Chemistry and Physics, 2014, 14, 11313-11333.	4.9	59
49	Validation of methane and carbon monoxide from Sentinel-5 Precursor using TCCON and NDACC-IRWG stations. Atmospheric Measurement Techniques, 2021, 14, 6249-6304.	3.1	57
50	Ground-Based Solar Absorption FTIR Spectroscopy: Characterization of Retrievals and First Results from a Novel Optical Design Instrument at a New NDACC Complementary Station. Journal of Atmospheric and Oceanic Technology, 2007, 24, 432-448.	1.3	55
51	Assessment of a multi-species in situ FTIR for precise atmospheric greenhouse gas observations. Atmospheric Measurement Techniques, 2013, 6, 1153-1170.	3.1	55
52	Vertical profiles of nitrous oxide isotopomer fractionation measured in the stratosphere. Geophysical Research Letters, 2000, 27, 2485-2488.	4.0	53
53	A decade of GOSAT Proxy satellite CH ₄ observations. Earth System Science Data, 2020, 12, 3383-3412.	9.9	53
54	Trace gas emissions from savanna fires in northern Australia. Journal of Geophysical Research, 2010, 115, .	3.3	51

#	Article	IF	Citations
55	Interhemispheric ratio and annual cycle of carbonyl sulfide (OCS) total column from ground-based solar FTIR spectra. Journal of Geophysical Research, 1998, 103, 8447-8454.	3.3	49
56	The $13C$ and D kinetic isotope effects in the reaction of CH4 with Cl. International Journal of Chemical Kinetics, 2005 , 37 , 110 - 118 .	1.6	49
57	Positionally dependent15N fractionation factors in the UV photolysis of N2O determined by high resolution FTIR spectroscopy. Geophysical Research Letters, 2000, 27, 2489-2492.	4.0	47
58	Accuracy of micrometeorological techniques for detecting a change in methane emissions from a herd of cattle. Agricultural and Forest Meteorology, 2013, 176, 50-63.	4.8	46
59	Validation of IASI FORLI carbon monoxide retrievals using FTIR data from NDACC. Atmospheric Measurement Techniques, 2012, 5, 2751-2761.	3.1	45
60	HDO/H ₂ O ratio retrievals from GOSAT. Atmospheric Measurement Techniques, 2013, 6, 599-612.	3.1	45
61	Consistent satellite XCO ₂ retrievals from SCIAMACHY and GOSAT using the BESD algorithm. Atmospheric Measurement Techniques, 2015, 8, 2961-2980.	3.1	45
62	Carbon dioxide retrieval from OCO-2 satellite observations using the RemoTeC algorithm and validation with TCCON measurements. Atmospheric Measurement Techniques, 2018, 11, 3111-3130.	3.1	45
63	Investigating the performance of a greenhouse gas observatory in Hefei, China. Atmospheric Measurement Techniques, 2017, 10, 2627-2643.	3.1	44
64	Validation of MOPITT carbon monoxide using ground-based Fourier transform infrared spectrometer data from NDACC. Atmospheric Measurement Techniques, 2017, 10, 1927-1956.	3.1	44
65	Methane Emissions from Freeâ€Ranging Cattle: Comparison of Tracer and Integrated Horizontal Flux Techniques. Journal of Environmental Quality, 2008, 37, 582-591.	2.0	42
66	Bias corrections of GOSAT SWIR XCO ₂ and XCH ₄ with TCCON data and their evaluation using aircraft measurement data. Atmospheric Measurement Techniques, 2016, 9, 3491-3512.	3.1	40
67	CO + OH → CO2 + H: The relative reaction rate of five CO isotopologues. Physical C Physics, 2002, 4, 4687-4693.	hemistry (2.8	Chemical
68	Using XCO ₂ retrievals for assessing the long-term consistency of NDACC/FTIR data sets. Atmospheric Measurement Techniques, 2015, 8, 1555-1573.	3.1	39
69	Tropospheric CH ₄ signals as observed by NDACC FTIR at globally distributed sites and comparison to GAW surface in situ measurements. Atmospheric Measurement Techniques, 2014, 7, 2337-2360.	3.1	38
70	Ability of the 4-D-Var analysis of the GOSAT BESD XCO ₂ retrievals to characterize atmospheric CO ₂ at large and synoptic scales. Atmospheric Chemistry and Physics, 2016, 16, 1653-1671.	4.9	38
71	Ground-based infrared spectroscopic measurements of carbonyl sulfide: Free tropospheric trends from a 24-year time series of solar absorption measurements. Journal of Geophysical Research, 2002, 107, ACH 24-1.	3.3	37
72	Ground-based measurements of tropospheric CO, C2H6, and HCN from Australia at 34°S latitude during 1997-1998. Journal of Geophysical Research, 2001, 106, 20913-20924.	3.3	36

#	Article	IF	CITATIONS
73	The Australian methane budget: Interpreting surface and train-borne measurements using a chemistry transport model. Journal of Geophysical Research, 2011, 116, .	3.3	36
74	The Orbiting Carbon Observatory (OCO-2) tracks 2–3 peta-gram increase in carbon release to the atmosphere during the 2014–2016 El Niño. Scientific Reports, 2017, 7, 13567.	3.3	35
75	Intercomparison of NDSC Ground-Based Solar FTIR Measurements of Atmospheric Gases at Lauder, New Zealand. Journal of Atmospheric and Oceanic Technology, 2003, 20, 1138-1153.	1.3	33
76	Measurement of methanol emissions from Australian wildfires by groundâ€based solar Fourier transform spectroscopy. Geophysical Research Letters, 2008, 35, .	4.0	33
77	Agricultural gas emissions during the spring thaw: Applying a new measurement technique. Agricultural and Forest Meteorology, 2016, 221, 111-121.	4.8	33
78	Global land mapping of satellite-observed CO ₂ total columns using spatio-temporal geostatistics. International Journal of Digital Earth, 2017, 10, 426-456.	3.9	33
79	The recent increase of atmospheric methane from 10 years of ground-based NDACC FTIR observations since 2005. Atmospheric Chemistry and Physics, 2017, 17, 2255-2277.	4.9	33
80	Emission factors of trace gases and particles from tropical savanna fires in Australia. Journal of Geophysical Research D: Atmospheres, 2017, 122, 6059-6074.	3.3	32
81	Validation of five years (2003–2007) of SCIAMACHY CO total column measurements using ground-based spectrometer observations. Atmospheric Measurement Techniques, 2010, 3, 1457-1471.	3.1	31
82	Multi-model simulation of CO and HCHO in the Southern Hemisphere: comparison with observations and impact of biogenic emissions. Atmospheric Chemistry and Physics, 2015, 15, 7217-7245.	4.9	31
83	Seasonal total methane depletion in limestone caves. Scientific Reports, 2017, 7, 8314.	3.3	30
84	Verifying Inventory Predictions of Animal Methane Emissions with Meteorological Measurements. Boundary-Layer Meteorology, 2000, 96, 187-209.	2.3	28
85	Derivation of tropospheric methane from TCCON CH ₄ and HF total column observations. Atmospheric Measurement Techniques, 2014, 7, 2907-2918.	3.1	28
86	Seasonal variability of surface and column carbon monoxide over the megacity Paris, high-altitude Jungfraujoch and Southern Hemispheric Wollongong stations. Atmospheric Chemistry and Physics, 2016, 16, 10911-10925.	4.9	28
87	Intercomparison of low- and high-resolution infrared spectrometers for ground-based solar remote sensing measurements of total column concentrations of CO ₂ , CH ₄ , and CO. Atmospheric Measurement Techniques, 2020, 13, 4791-4839.	3.1	28
88	Long open-path measurements of greenhouse gases in air using near-infrared Fourier transform spectroscopy. Atmospheric Measurement Techniques, 2018, 11, 1549-1563.	3.1	27
89	CH ₄ , CO, and H ₂ O spectroscopy for the Sentinel-5 Precursor mission: an assessment with the Total Carbon Column Observing Network measurements. Atmospheric Measurement Techniques, 2012, 5, 1387-1398.	3.1	26
90	Improved Constraints on Northern Extratropical CO ₂ Fluxes Obtained by Combining Surfaceâ€Based and Spaceâ€Based Atmospheric CO ₂ Measurements. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032029.	3.3	26

#	ARTICLE	IF	CITATIONS
91	rropospheric water vapour isotopologue data (H _{16O,) Tj ETQq1 1 (}).784314 rgBT 9.9	/Overlock 26
92	Calibration Strategies for FT-IR and Other Isotope Ratio Infrared Spectrometer Instruments for Accurate Î' ¹³ C and Î' ¹⁸ O Measurements of CO ₂ in Air. Analytical Chemistry, 2017, 89, 3648-3655.	6.5	25
93	Toward High Precision XCO ₂ Retrievals From TanSat Observations: Retrieval Improvement and Validation Against TCCON Measurements. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032794.	3.3	25
94	First intercalibration of column-averaged methane from the Total Carbon Column Observing Network and the Network for the Detection of Atmospheric Composition Change. Atmospheric Measurement Techniques, 2013, 6, 397-418.	3.1	24
95	Seasonal variability of stratospheric methane: implications for constraining tropospheric methane budgets using total column observations. Atmospheric Chemistry and Physics, 2016, 16, 14003-14024.	4.9	24
96	Biomass burning emissions in north Australia during the early dry season: an overview of the 2014 SAFIRED campaign. Atmospheric Chemistry and Physics, 2017, 17, 13681-13697.	4.9	24
97	Advances in reference materials and measurement techniques for greenhouse gas atmospheric observations. Metrologia, 2019, 56, 034006.	1.2	24
98	Regional CO emission estimated from ground-based remote sensing at Hefei site, China. Atmospheric Research, 2019, 222, 25-35.	4.1	24
99	The MUMBA campaign: measurements of urban, marine and biogenic air. Earth System Science Data, 2017, 9, 349-362.	9.9	24
100	Retrieval of tropospheric column-averaged CH ₄ mole fraction by solar absorption FTIR-spectrometry using N ₂ O as a proxy. Atmospheric Measurement Techniques, 2014, 7, 3295-3305.	3.1	23
101	Evaluation of column-averaged methane in models and TCCON with a focus on the stratosphere. Atmospheric Measurement Techniques, 2016, 9, 4843-4859.	3.1	23
102	Real-time field measurements of stable isotopes in water and CO2by Fourier transform infrared spectrometry. Isotopes in Environmental and Health Studies, 2006, 42, 9-20.	1.0	22
103	TCCON Philippines: First Measurement Results, Satellite Data and Model Comparisons in Southeast Asia. Remote Sensing, 2017, 9, 1228.	4.0	22
104	Soil methane oxidation in both dry and wet temperate eucalypt forests shows a near-identical relationship with soil air-filled porosity. Biogeosciences, 2017, 14, 467-479.	3.3	22
105	Urban Air Quality in a Coastal City: Wollongong during the MUMBA Campaign. Atmosphere, 2018, 9, 500.	2.3	22
106	Ensemble-based satellite-derived carbon dioxide and methane column-averaged dry-air mole fraction data sets (2003–2018) for carbon and climate applications. Atmospheric Measurement Techniques, 2020, 13, 789-819.	3.1	22
107	The influence of instrumental line shape degradation on NDACC gas retrievals: total column and profile. Atmospheric Measurement Techniques, 2018, 11, 2879-2896.	3.1	21
108	Evaluation of MOPITT VersionÂ7 joint TIR–NIR X _{CO} retrievals with TCCON. Atmospheric Measurement Techniques, 2019, 12, 5547-5572.	3.1	21

#	Article	IF	Citations
109	The Carbon Cycle of Southeast Australia During 2019–2020: Drought, Fires, and Subsequent Recovery. AGU Advances, 2021, 2, .	5.4	21
110	Comparison of XH2O Retrieved from GOSAT Short-Wavelength Infrared Spectra with Observations from the TCCON Network. Remote Sensing, 2016, 8, 414.	4.0	20
111	Calibration of isotopologue-specific optical trace gas analysers: a practical guide. Atmospheric Measurement Techniques, 2018, 11, 6189-6201.	3.1	20
112	Evidence for altitude-dependent photolysis-induced 180 isotopic fractionation in stratospheric ozone. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	19
113	Vehicle Ammonia Emissions Measured in An Urban Environment in Sydney, Australia, Using Open Path Fourier Transform Infra-Red Spectroscopy. Atmosphere, 2019, 10, 208.	2.3	19
114	Drivers of column-average CO ₂ variability at Southern Hemispheric Total Carbon Column Observing Network sites. Atmospheric Chemistry and Physics, 2014, 14, 9883-9901.	4.9	18
115	Combining two complementary micrometeorological methods to measure CH ₄ and N ₂ O fluxes over pasture. Biogeosciences, 2016, 13, 1309-1327.	3.3	18
116	Identification of gas-phase pyrolysis products in a prescribed fire: first detections using infrared spectroscopy for naphthalene, methyl nitrite, allene, acrolein and acetaldehyde. Atmospheric Measurement Techniques, 2019, 12, 763-776.	3.1	18
117	Satellite and ground-based measurements of XCO ₂ in aÂremote semiarid region of Australia. Earth System Science Data, 2019, 11, 935-946.	9.9	18
118	An 11-year record of XCO ₂ estimates derived from GOSAT measurements using the NASA ACOS version 9 retrieval algorithm. Earth System Science Data, 2022, 14, 325-360.	9.9	17
119	Tracking Short-Term Effects of Nitrogen-15 Addition on Nitrous Oxide Fluxes Using Fourier-Transform Infrared Spectroscopy. Journal of Environmental Quality, 2013, 42, 1327-1340.	2.0	16
120	Absolute Calibration of the Intramolecular Site Preference of ¹⁵ N Fractionation in Tropospheric N ₂ O by FT-IR Spectroscopy. Analytical Chemistry, 2009, 81, 2227-2234.	6.5	15
121	Long-range correlations in Fourier transform infrared, satellite, and modeled CO in the Southern Hemisphere. Journal of Geophysical Research, 2012, 117, n/a-n/a.	3.3	15
122	Isotope labeling reveals contribution of newly fixed carbon to carbon storage and monoterpenes production under water deficit and carbon limitation. Environmental and Experimental Botany, 2019, 162, 333-344.	4.2	15
123	XCO ₂ retrieval for GOSAT and GOSAT-2 based on the FOCAL algorithm. Atmospheric Measurement Techniques, 2021, 14, 3837-3869.	3.1	15
124	First continuous measurements of Î' ₂ in air with a Fourier transform infrared spectrometer. Atmospheric Measurement Techniques, 2015, 8, 579-592.	3.1	13
125	Global Atmospheric OCS Trend Analysis From 22 NDACC Stations. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	12
126	Performance of open-path lasers and Fourier transform infrared spectroscopic systems in agriculture emissions research. Atmospheric Measurement Techniques, 2022, 15, 3593-3610.	3.1	12

#	Article	IF	CITATIONS
127	Calculations of carrier gas effects in non-dispersive infrared analyzers I. Theory. Tellus, 2022, 34, 376.	0.8	11
128	Usability of optical spectrum analyzer in measuring atmospheric CO ₂ and CH ₄ column densities: inspection with FTS and aircraft profiles in situ. Atmospheric Measurement Techniques, 2012, 5, 2593-2600.	3.1	10
129	Monitoring Urban Greenhouse Gases Using Open-Path Fourier Transform Spectroscopy. Atmosphere - Ocean, 2020, 58, 25-45.	1.6	10
130	Retrieval of greenhouse gases from GOSAT and GOSAT-2 using the FOCAL algorithm. Atmospheric Measurement Techniques, 2022, 15, 3401-3437.	3.1	10
131	Characterization and potential for reducing optical resonances in Fourier transform infrared spectrometers of the Network for the Detection of Atmospheric Composition Change (NDACC). Atmospheric Measurement Techniques, 2021, 14, 1239-1252.	3.1	9
132	Trainâ€borne measurements of tropical methane enhancements from ephemeral wetlands in Australia. Journal of Geophysical Research, 2010, 115, .	3.3	8
133	Composition of Clean Marine Air and Biogenic Influences on VOCs during the MUMBA Campaign. Atmosphere, 2019, 10, 383.	2.3	8
134	Was Australia a sink or source of CO ₂ in 2015? Data assimilation using OCO-2 satellite measurements. Atmospheric Chemistry and Physics, 2021, 21, 17453-17494.	4.9	8
135	Kinetic isotope effects of ¹² CH ₃ D  + OH and ¹³ CH ₃ D  + OH from 313 K. Atmospheric Chemistry and Physics. 2016. 16. 4439-4449.	l n ⁴ 278 to	7
136	Contributions of the troposphere and stratosphere to CH ₄ model biases. Atmospheric Chemistry and Physics, 2017, 17, 13283-13295.	4.9	7
137	Characteristics of greenhouse gas concentrations derived from ground-based FTS spectra at Anmyeondo, South Korea. Atmospheric Measurement Techniques, 2018, 11, 2361-2374.	3.1	7
138	Transport of NOX Emissions from Sugarcane Fertilisation into the Great Barrier Reef Lagoon. Environmental Modeling and Assessment, 2011, 16, 441-452.	2.2	6
139	The impact of spectral resolution on satellite retrieval accuracy of CO ₂ and CH ₄ . Atmospheric Measurement Techniques, 2014, 7, 1105-1119.	3.1	6
140	Validation of GOSAT SWIR XCO ₂ and XCH ₄ Retrieved by PPDF-S Method and Comparison with Full Physics Method. Scientific Online Letters on the Atmosphere, 2017, 13, 168-173.	1.4	6
141	Decreasing Trend in Formaldehyde Detected From 20â€Year Record at Wollongong, Southeast Australia. Geophysical Research Letters, 2019, 46, 8464-8473.	4.0	6
142	Australian Fire Emissions of Carbon Monoxide Estimated by Global Biomass Burning Inventories: Variability and Observational Constraints. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	6
143	Simultaneous shipborne measurements of CO ₂ , CH ₄ and CO and their application to improving greenhouse-gas flux estimates in Australia. Atmospheric Chemistry and Physics, 2019, 19, 7055-7072.	4.9	5
144	A decade of CH ₄ , CO and N ₂ O in situ measurements at Lauder, New Zealand: assessing the long-term performance of a Fourier transform infrared trace gas and isotope analyser. Atmospheric Measurement Techniques, 2019, 12, 637-673.	3.1	5

#	Article	IF	CITATIONS
145	The Adaptable 4A Inversion (5AI): description and first & amp;lt;i>X _{CO_{CO>2}>>wamp;gt;wa}	ıp; <u> </u> t;/sub&	amp;gt;
146	2019 \hat{a} €"20 Australian Bushfires and Anomalies in Carbon Monoxide Surface and Column Measurements. Atmosphere, 2021, 12, 755.	2.3	5
147	Interannual variability in the Australian carbon cycle over 2015–2019, based on assimilation of Orbiting Carbon Observatory-2 (OCO-2) satellite data. Atmospheric Chemistry and Physics, 2022, 22, 8897-8934.	4.9	5
148	Bias Correction of the Ratio of Total Column CH4 to CO2 Retrieved from GOSAT Spectra. Remote Sensing, 2020, 12, 3155.	4.0	2
149	Performance of an open-path near-infrared measurement system for measurements of CO ₂ and CH ₄ during extended field trials. Atmospheric Measurement Techniques, 2021, 14, 3119-3130.	3.1	2
150	FTIR in the Paddock: Trace gas soil flux measurements using FTIR spectroscopy. , 1998, , .		0
151	Philippines TCCON Project: One-year Measurement Results and Future. , 2018, , .		O