David J Mooney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/621701/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Immuneâ€responsive biodegradable scaffolds for enhancing neutrophil regeneration. Bioengineering and Translational Medicine, 2023, 8, .	7.1	2
2	Biomaterial vaccines capturing pathogen-associated molecular patterns protect against bacterial infections and septic shock. Nature Biomedical Engineering, 2022, 6, 8-18.	22.5	31
3	Materials for Implantable Surface Electrode Arrays: Current Status and Future Directions. Advanced Materials, 2022, 34, e2107207.	21.0	21
4	Quantifying face mask comfort. Journal of Occupational and Environmental Hygiene, 2022, 19, 23-34.	1.0	6
5	Enhanced tendon healing by a tough hydrogel with an adhesive side and high drug-loading capacity. Nature Biomedical Engineering, 2022, 6, 1167-1179.	22.5	92
6	Cryogel vaccines effectively induce immune responses independent of proximity to the draining lymph nodes. Biomaterials, 2022, 281, 121329.	11.4	13
7	Scaffold Vaccines for Generating Robust and Tunable Antibody Responses. Advanced Functional Materials, 2022, 32, .	14.9	9
8	Recent and Future Strategies of Mechanotherapy for Tissue Regenerative Rehabilitation. ACS Biomaterials Science and Engineering, 2022, 8, 4639-4642.	5.2	9
9	Antiplatelet therapy for Staphylococcus aureus bacteremia: Will it stick?. PLoS Pathogens, 2022, 18, e1010240.	4.7	2
10	Aging and matrix viscoelasticity affect multiscale tendon properties and tendon derived cell behavior. Acta Biomaterialia, 2022, 143, 63-71.	8.3	16
11	Development of a liposomal near-infrared fluorescence lactate assay for human blood. Biomaterials, 2022, 283, 121475.	11.4	6
12	Actuated 3D microgels for single cell mechanobiology. Lab on A Chip, 2022, 22, 1962-1970.	6.0	7
13	Viscoelastic Biomaterials for Tissue Regeneration. Tissue Engineering - Part C: Methods, 2022, 28, 289-300.	2.1	19
14	Nanoparticle Properties Influence Transendothelial Migration of Monocytes. Langmuir, 2022, 38, 5603-5616.	3.5	5
15	Targeting tumor extracellular matrix activates the tumor-draining lymph nodes. Cancer Immunology, Immunotherapy, 2022, 71, 2957-2968.	4.2	6
16	A vaccine targeting resistant tumours by dual T cell plus NK cell attack. Nature, 2022, 606, 992-998.	27.8	65
17	Development of a physiological insulin resistance model in human stem cell–derived adipocytes. Science Advances, 2022, 8, .	10.3	10
18	STING activation promotes robust immune response and NK cell–mediated tumor regression in glioblastoma models. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	44

#	Article	IF	CITATIONS
19	Mechanical checkpoint regulates monocyte differentiation in fibrotic niches. Nature Materials, 2022, 21, 939-950.	27.5	22
20	A Novel Three-Dimensional Skin Disease Model to Assess Macrophage Function in Diabetes. Tissue Engineering - Part C: Methods, 2021, 27, 49-58.	2.1	16
21	A novel two-component, expandable bioadhesive for exposed defect coverage: Applicability to prenatal procedures. Journal of Pediatric Surgery, 2021, 56, 165-169.	1.6	11
22	Active biomaterials for mechanobiology. Biomaterials, 2021, 267, 120497.	11.4	60
23	Generation of the Compression-induced Dedifferentiated Adipocytes (CiDAs) Using Hypertonic Medium. Bio-protocol, 2021, 11, e3920.	0.4	3
24	Abstract PO085: Cryogel-based cancer vaccine to treat acute myeloid leukemia. Cancer Immunology Research, 2021, 9, PO085-PO085.	3.4	1
25	Advanced bandages for diabetic wound healing. Science Translational Medicine, 2021, 13, .	12.4	181
26	Degradable and Removable Tough Adhesive Hydrogels. Advanced Materials, 2021, 33, e2008553.	21.0	99
27	Viscoelastic surface electrode arrays to interface with viscoelastic tissues. Nature Nanotechnology, 2021, 16, 1019-1029.	31.5	144
28	Anti-inflammatory nanoparticles significantly improve muscle function in a murine model of advanced muscular dystrophy. Science Advances, 2021, 7, .	10.3	28
29	Obstacles and opportunities in a forward vision for cancer nanomedicine. Nature Materials, 2021, 20, 1469-1479.	27.5	206
30	Risk quantification for SARS-CoV-2 infection through airborne transmission in university settings. Journal of Occupational and Environmental Hygiene, 2021, 18, 590-603.	1.0	6
31	Delivery of Thrombospondin-2 Small Interfering RNA for Suppression of Intimal Hyperplasia. Journal of Vascular Surgery, 2021, 74, e297.	1.1	0
32	Polymeric Tissue Adhesives. Chemical Reviews, 2021, 121, 11336-11384.	47.7	306
33	Skeletal muscle regeneration with robotic actuation–mediated clearance of neutrophils. Science Translational Medicine, 2021, 13, eabe8868.	12.4	42
34	A Modular Biomaterial Scaffoldâ€Based Vaccine Elicits Durable Adaptive Immunity to Subunit SARS oVâ€⊋ Antigens. Advanced Healthcare Materials, 2021, 10, e2101370.	7.6	10
35	Ultrasound-triggered release reveals optimal timing of CpG-ODN delivery from a cryogel cancer vaccine. Biomaterials, 2021, 279, 121240.	11.4	16
36	EXTH-81. STING ACTIVATION PROMOTES ROBUST IMMUNE RESPONSE AND TUMOR REGRESSION IN GLIOBLASTOMA MODELS. Neuro-Oncology, 2021, 23, vi182-vi182.	1.2	0

#	Article	IF	CITATIONS
37	Mechanical Checkpoint Regulates Monocyte Differentiation in Fibrotic Matrix. Blood, 2021, 138, 2539-2539.	1.4	5
38	Topical Application of a Mast Cell Stabilizer Improves Impaired Diabetic Wound Healing. Journal of Investigative Dermatology, 2020, 140, 901-911.e11.	0.7	58
39	Immediate Treatment of Burn Wounds with High Concentrations of Topical Antibiotics in an Alginate Hydrogel Using a Platform Wound Device. Advances in Wound Care, 2020, 9, 48-60.	5.1	36
40	Clickable, acid labile immunosuppressive prodrugs for <i>in vivo</i> targeting. Biomaterials Science, 2020, 8, 266-277.	5.4	16
41	Niche-mimicking interactions in peptide-functionalized 3D hydrogels amplify mesenchymal stromal cell paracrine effects. Biomaterials, 2020, 230, 119639.	11.4	43
42	Engineered tissues and strategies to overcome challenges in drug development. Advanced Drug Delivery Reviews, 2020, 158, 116-139.	13.7	26
43	Extracellular matrix plasticity as a driver of cell spreading. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25999-26007.	7.1	65
44	Single‧hot Mesoporous Silica Rods Scaffold for Induction of Humoral Responses Against Small Antigens. Advanced Functional Materials, 2020, 30, 2002448.	14.9	31
45	Metabolic glycan labelling for cancer-targeted therapy. Nature Chemistry, 2020, 12, 1102-1114.	13.6	101
46	Biomaterial-based scaffold for in situ chemo-immunotherapy to treat poorly immunogenic tumors. Nature Communications, 2020, 11, 5696.	12.8	99
47	Dual alginate crosslinking for local patterning of biophysical and biochemical properties. Acta Biomaterialia, 2020, 115, 185-196.	8.3	15
48	Multifunctional biomimetic hydrogel systems to boost the immunomodulatory potential of mesenchymal stromal cells. Biomaterials, 2020, 257, 120266.	11.4	44
49	Cell and tissue engineering in lymph nodes for cancer immunotherapy. Advanced Drug Delivery Reviews, 2020, 161-162, 42-62.	13.7	43
50	Biomaterials as Local Niches for Immunomodulation. Accounts of Chemical Research, 2020, 53, 1749-1760.	15.6	73
51	3D encapsulation and inflammatory licensing of mesenchymal stromal cells alter the expression of common reference genes used in real-time RT-qPCR. Biomaterials Science, 2020, 8, 6741-6753.	5.4	4
52	Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature, 2020, 584, 535-546.	27.8	1,045
53	Steroid–Peptide Immunoconjugates for Attenuating T Cell Responses in an Experimental Autoimmune Encephalomyelitis Murine Model of Multiple Sclerosis. Bioconjugate Chemistry, 2020, 31, 2779-2788.	3.6	5
54	Metabolic labeling and targeted modulation of dendritic cells. Nature Materials, 2020, 19, 1244-1252.	27.5	99

#	Article	IF	CITATIONS
55	Extracellular matrix mechanics regulate transfection and SOX9-directed differentiation of mesenchymal stem cells. Acta Biomaterialia, 2020, 110, 153-163.	8.3	36
56	Tuning cytokines enriches dendritic cells and regulatory T cells inÂthe periodontium. Journal of Periodontology, 2020, 91, 1475-1485.	3.4	13
57	Biomaterials Functionalized with MSC Secreted Extracellular Vesicles and Soluble Factors for Tissue Regeneration. Advanced Functional Materials, 2020, 30, 1909125.	14.9	204
58	Alginate Hydrogels for <i>In Vivo</i> Bone Regeneration: The Immune Competence of the Animal Model Matters. Tissue Engineering - Part A, 2020, 26, 852-862.	3.1	24
59	Regenerating Antithrombotic Surfaces through Nucleic Acid Displacement. ACS Biomaterials Science and Engineering, 2020, 6, 2159-2166.	5.2	2
60	Filmed over with CAR-T cells. Nature Biomedical Engineering, 2020, 4, 142-143.	22.5	2
61	Activation and expansion of human T cells using artificial antigen-presenting cell scaffolds. Nature Protocols, 2020, 15, 773-798.	12.0	42
62	Compression-induced dedifferentiation of adipocytes promotes tumor progression. Science Advances, 2020, 6, eaax5611.	10.3	53
63	A biomaterial-based vaccine eliciting durable tumour-specific responses against acute myeloid leukaemia. Nature Biomedical Engineering, 2020, 4, 40-51.	22.5	83
64	Soft extracellular matrix enhances inflammatory activation of mesenchymal stromal cells to induce monocyte production and trafficking. Science Advances, 2020, 6, eaaw0158.	10.3	73
65	A nanoparticle's pathway into tumours. Nature Materials, 2020, 19, 486-487.	27.5	117
66	Nearâ€Infrared Fluorescence Hydrogen Peroxide Assay for Versatile Metabolite Biosensing in Whole Blood. Small, 2020, 16, e2000369.	10.0	12
67	Differentiation of diabetic foot ulcer–derived induced pluripotent stem cells reveals distinct cellular and tissue phenotypes. FASEB Journal, 2019, 33, 1262-1277.	0.5	39
68	Treating ischemia via recruitment of antigen-specific T cells. Science Advances, 2019, 5, eaav6313.	10.3	26
69	Programmable microencapsulation for enhanced mesenchymal stem cell persistence and immunomodulation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15392-15397.	7.1	124
70	Bioinspired mechanically active adhesive dressings to accelerate wound closure. Science Advances, 2019, 5, eaaw3963.	10.3	337
71	Antibiotic-Containing Agarose Hydrogel for Wound and Burn Care. Journal of Burn Care and Research, 2019, 40, 900-906.	0.4	44
72	Enzymatically-degradable alginate hydrogels promote cell spreading and in vivo tissue infiltration. Biomaterials, 2019, 217, 119294.	11.4	95

#	Article	IF	CITATIONS
73	Acetalated Dextran Nanoparticles Loaded into an Injectable Alginate Cryogel for Combined Chemotherapy and Cancer Vaccination. Advanced Functional Materials, 2019, 29, 1903686.	14.9	41
74	Combined delivery of VEGF and IGF-1 promotes functional innervation in mice and improves muscle transplantation in rabbits. Biomaterials, 2019, 216, 119246.	11.4	38
75	Design Molecular Topology for Wet–Dry Adhesion. ACS Applied Materials & Interfaces, 2019, 11, 24802-24811.	8.0	76
76	Multi-flow channel bioreactor enables real-time monitoring of cellular dynamics in 3D engineered tissue. Communications Biology, 2019, 2, 158.	4.4	17
77	Macroscale biomaterials strategies for local immunomodulation. Nature Reviews Materials, 2019, 4, 379-397.	48.7	172
78	Biomaterials to Mimic and Heal Connective Tissues. Advanced Materials, 2019, 31, e1806695.	21.0	131
79	Modular soft robotic microdevices for dexterous biomanipulation. Lab on A Chip, 2019, 19, 778-788.	6.0	27
80	An injectable bone marrow–like scaffold enhances T cell immunity after hematopoietic stem cell transplantation. Nature Biotechnology, 2019, 37, 293-302.	17.5	79
81	Anti-tumor immunity induced by ectopic expression of viral antigens is transient and limited by immune escape. Oncolmmunology, 2019, 8, e1568809.	4.6	22
82	Sequential modes of crosslinking tune viscoelasticity of cell-instructive hydrogels. Biomaterials, 2019, 188, 187-197.	11.4	91
83	Delivery of targeted gene therapies using a hybrid cryogel-coated prosthetic vascular graft. PeerJ, 2019, 7, e7377.	2.0	5
84	A Ligand System for the Flexible Functionalization of Quantum Dots via Click Chemistry. Angewandte Chemie - International Edition, 2018, 57, 4652-4656.	13.8	28
85	A Ligand System for the Flexible Functionalization of Quantum Dots via Click Chemistry. Angewandte Chemie, 2018, 130, 4742-4746.	2.0	7
86	A facile approach to enhance antigen response for personalized cancer vaccination. Nature Materials, 2018, 17, 528-534.	27.5	313
87	FGF2 Enhances Odontoblast Differentiation by αSMA+ Progenitors In Vivo. Journal of Dental Research, 2018, 97, 1170-1177.	5.2	19
88	Tough Composite Hydrogels with High Loading and Local Release of Biological Drugs. Advanced Healthcare Materials, 2018, 7, e1701393.	7.6	52
89	Improved magnetic regulation of delivery profiles from ferrogels. Biomaterials, 2018, 161, 179-189.	11.4	47
90	Physical Polyurethane Hydrogels via Charge Shielding through Acids or Salts. Macromolecular Rapid Communications, 2018, 39, e1700711.	3.9	4

#	Article	IF	CITATIONS
91	Injectable, Tough Alginate Cryogels as Cancer Vaccines. Advanced Healthcare Materials, 2018, 7, e1701469.	7.6	96
92	Microfluidic Templated Multicompartment Microgels for 3D Encapsulation and Pairing of Single Cells. Small, 2018, 14, 1702955.	10.0	118
93	Scaffolds that mimic antigen-presenting cells enable ex vivo expansion of primary T cells. Nature Biotechnology, 2018, 36, 160-169.	17.5	271
94	Covalent Conjugation of Peptide Antigen to Mesoporous Silica Rods to Enhance Cellular Responses. Bioconjugate Chemistry, 2018, 29, 733-741.	3.6	25
95	Replenishable drug depot to combat post-resection cancer recurrence. Biomaterials, 2018, 178, 373-382.	11.4	40
96	Matrix stiffness and tumor-associated macrophages modulate epithelial to mesenchymal transition of human adenocarcinoma cells. Biofabrication, 2018, 10, 035004.	7.1	63
97	Flow-Induced Vascular Network Formation and Maturation in Three-Dimensional Engineered Tissue. ACS Biomaterials Science and Engineering, 2018, 4, 1265-1271.	5.2	31
98	Synthetic Light urable Polymeric Materials Provide a Supportive Niche for Dental Pulp Stem Cells. Advanced Materials, 2018, 30, 1704486.	21.0	35
99	Injectable nanocomposite cryogels for versatile protein drug delivery. Acta Biomaterialia, 2018, 65, 36-43.	8.3	134
100	Evaluation of a bioengineered construct for tissue engineering applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 2345-2354.	3.4	12
101	Functional muscle recovery with nanoparticle-directed M2 macrophage polarization in mice. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10648-10653.	7.1	112
102	Force Control of Textile-Based Soft Wearable Robots for Mechanotherapy. , 2018, , .		21
103	Towards Alternative Approaches for Coupling of a Soft Robotic Sleeve to the Heart. Annals of Biomedical Engineering, 2018, 46, 1534-1547.	2.5	31
104	RNA-seq reveals diverse effects of substrate stiffness on mesenchymal stem cells. Biomaterials, 2018, 181, 182-188.	11.4	64
105	Hydrolytically-degradable click-crosslinked alginate hydrogels. Biomaterials, 2018, 181, 189-198.	11.4	79
106	Targeting DEC-205â^'DCIR2+ dendritic cells promotes immunological tolerance in proteolipid protein-induced experimental autoimmune encephalomyelitis. Molecular Medicine, 2018, 24, 17.	4.4	32
107	Material microenvironmental properties couple to induce distinct transcriptional programs in mammalian stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8368-E8377.	7.1	93
108	Biomaterial-assisted targeted modulation of immune cells in cancer treatment. Nature Materials, 2018, 17, 761-772.	27.5	352

#	Article	IF	CITATIONS
109	CD4 T-cells regulate angiogenesis and myogenesis. Biomaterials, 2018, 178, 109-121.	11.4	43
110	Sustained release of targeted cardiac therapy with a replenishable implanted epicardial reservoir. Nature Biomedical Engineering, 2018, 2, 416-428.	22.5	70
111	Soft robotic sleeve supports heart function. Science Translational Medicine, 2017, 9, .	12.4	280
112	Liposomal Delivery Enhances Immune Activation by STING Agonists for Cancer Immunotherapy. Advanced Biology, 2017, 1, 1600013.	3.0	175
113	Multicomponent Injectable Hydrogels for Antigenâ€Specific Tolerogenic Immune Modulation. Advanced Healthcare Materials, 2017, 6, 1600773.	7.6	79
114	Single cell-laden protease-sensitive microniches for long-term culture in 3D. Lab on A Chip, 2017, 17, 727-737.	6.0	43
115	In Vivo Enrichment of Diabetogenic T Cells. Diabetes, 2017, 66, 2220-2229.	0.6	23
116	Biomaterials that promote cell-cell interactions enhance the paracrine function of MSCs. Biomaterials, 2017, 140, 103-114.	11.4	220
117	Emerging Trends in Micro- and Nanoscale Technologies in Medicine: From Basic Discoveries to Translation. ACS Nano, 2017, 11, 5195-5214.	14.6	104
118	Substrate Stressâ€Relaxation Regulates Scaffold Remodeling and Bone Formation In Vivo. Advanced Healthcare Materials, 2017, 6, 1601185.	7.6	104
119	Mechanical confinement regulates cartilage matrix formation by chondrocytes. Nature Materials, 2017, 16, 1243-1251.	27.5	348
120	Cell volume change through water efflux impacts cell stiffness and stem cell fate. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8618-E8627.	7.1	362
121	Hydrogel substrate stress-relaxation regulates the spreading and proliferation of mouse myoblasts. Acta Biomaterialia, 2017, 62, 82-90.	8.3	120
122	In-situ tissue regeneration through SDF- $1\hat{l}$ ± driven cell recruitment and stiffness-mediated bone regeneration in a critical-sized segmental femoral defect. Acta Biomaterialia, 2017, 60, 50-63.	8.3	62
123	Timed Delivery of Therapy Enhances Functional Muscle Regeneration. Advanced Healthcare Materials, 2017, 6, 1700202.	7.6	6
124	Tough adhesives for diverse wet surfaces. Science, 2017, 357, 378-381.	12.6	1,068
125	Leveraging advances in biology to design biomaterials. Nature Materials, 2017, 16, 1178-1185.	27.5	97
126	Mechanical forces direct stem cell behaviour in development and regeneration. Nature Reviews Molecular Cell Biology, 2017, 18, 728-742.	37.0	1,042

8

#	Article	IF	CITATIONS
127	Biomaterials for skeletal muscle tissue engineering. Current Opinion in Biotechnology, 2017, 47, 16-22.	6.6	150
128	Deterministic encapsulation of single cells in thin tunable microgels for niche modelling and therapeutic delivery. Nature Materials, 2017, 16, 236-243.	27.5	286
129	Cell Microencapsulation by Droplet Microfluidic Templating. Macromolecular Chemistry and Physics, 2017, 218, 1600380.	2.2	36
130	Injectable Shape-Memorizing Three-Dimensional Hyaluronic Acid Cryogels for Skin Sculpting and Soft Tissue Reconstruction. Tissue Engineering - Part A, 2017, 23, 243-251.	3.1	28
131	Label-free bacterial detection using polydiacetylene liposomes. Chemical Communications, 2016, 52, 10346-10349.	4.1	46
132	Altered ECM deposition by diabetic foot ulcerâ€derived fibroblasts implicates fibronectin in chronic wound repair. Wound Repair and Regeneration, 2016, 24, 630-643.	3.0	77
133	Clickâ€Crosslinked Injectable Gelatin Hydrogels. Advanced Healthcare Materials, 2016, 5, 541-547.	7.6	129
134	Hydrogels in Vascular Tissue Engineering. , 2016, , 385-396.		0
135	CD44 alternative splicing in gastric cancer cells is regulated by culture dimensionality and matrix stiffness. Biomaterials, 2016, 98, 152-162.	11.4	34
136	Effects of substrate stiffness and cell-cell contact on mesenchymal stem cell differentiation. Biomaterials, 2016, 98, 184-191.	11.4	205
137	Synthetic niche to modulate regenerative potential of MSCs and enhance skeletal muscle regeneration. Biomaterials, 2016, 99, 95-108.	11.4	87
138	Oneâ€Step Microfluidic Fabrication of Polyelectrolyte Microcapsules in Aqueous Conditions for Protein Release. Angewandte Chemie - International Edition, 2016, 55, 13470-13474.	13.8	90
139	One‣tep Microfluidic Fabrication of Polyelectrolyte Microcapsules in Aqueous Conditions for Protein Release. Angewandte Chemie, 2016, 128, 13668-13672.	2.0	33
140	Extracellular matrix stiffness causes systematic variations in proliferation and chemosensitivity in myeloid leukemias. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12126-12131.	7.1	119
141	Designing hydrogels for controlled drug delivery. Nature Reviews Materials, 2016, 1, .	48.7	2,817
142	Vasculogenic dynamics in 3D engineered tissue constructs. Scientific Reports, 2016, 5, 17840.	3.3	51
143	Adjuvantâ€Loaded Subcellular Vesicles Derived From Disrupted Cancer Cells for Cancer Vaccination. Small, 2016, 12, 2321-2333.	10.0	39
144	Generation of Induced Pluripotent Stem Cells from Diabetic Foot Ulcer Fibroblasts Using a Nonintegrative Sendai Virus. Cellular Reprogramming, 2016, 18, 214-223.	0.9	28

#	Article	IF	CITATIONS
145	Biologic-free mechanically induced muscle regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1534-1539.	7.1	142
146	The effect of surface modification of mesoporous silica micro-rod scaffold on immune cell activation and infiltration. Biomaterials, 2016, 83, 249-256.	11.4	85
147	One-step generation of cell-laden microgels using double emulsion drops with a sacrificial ultra-thin oil shell. Lab on A Chip, 2016, 16, 1549-1555.	6.0	119
148	Biomaterials for enhancing anti-cancer immunity. Current Opinion in Biotechnology, 2016, 40, 1-8.	6.6	115
149	Reprogrammed Stomach Tissue as a Renewable Source of Functional β Cells for Blood Glucose Regulation. Cell Stem Cell, 2016, 18, 410-421.	11.1	119
150	Morphogenesis of 3D vascular networks is regulated by tensile forces. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3215-3220.	7.1	81
151	Advances in Therapeutic Cancer Vaccines. Advances in Immunology, 2016, 130, 191-249.	2.2	88
152	Biomaterials and emerging anticancer therapeutics: engineering the microenvironment. Nature Reviews Cancer, 2016, 16, 56-66.	28.4	341
153	Vaccines Combined with Immune Checkpoint Antibodies Promote Cytotoxic T-cell Activity and Tumor Eradication. Cancer Immunology Research, 2016, 4, 95-100.	3.4	124
154	Improving Stem Cell Therapeutics with Mechanobiology. Cell Stem Cell, 2016, 18, 16-19.	11.1	30
155	Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nature Materials, 2016, 15, 326-334.	27.5	1,650
156	Sequential release of nanoparticle payloads from ultrasonically burstable capsules. Biomaterials, 2016, 75, 91-101.	11.4	45
157	Abstract 117: Development of a Hybrid Cryogel-coated Prosthetic Vascular Graft for Delivery of Targeted Gene Therapies. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, .	2.4	0
158	Switchable Release of Entrapped Nanoparticles from Alginate Hydrogels. Advanced Healthcare Materials, 2015, 4, 1634-1639.	7.6	50
159	Microfluidic Generation of Monodisperse, Structurally Homogeneous Alginate Microgels for Cell Encapsulation and 3D Cell Culture. Advanced Healthcare Materials, 2015, 4, 1628-1633.	7.6	272
160	Injectable, Poreâ€Forming Hydrogels for In Vivo Enrichment of Immature Dendritic Cells. Advanced Healthcare Materials, 2015, 4, 2677-2687.	7.6	92
161	3D Printed Microtransporters: Compound Micromachines for Spatiotemporally Controlled Delivery of Therapeutic Agents. Advanced Materials, 2015, 27, 6644-6650.	21.0	192
162	The collagen I mimetic peptide <scp>DGEA</scp> enhances an osteogenic phenotype in mesenchymal stem cells when presented from cellâ€encapsulating hydrogels. Journal of Biomedical Materials Research - Part A, 2015, 103, 3516-3525.	4.0	39

#	Article	IF	CITATIONS
163	Substance P Promotes Wound Healing in Diabetes by Modulating Inflammation and Macrophage Phenotype. American Journal of Pathology, 2015, 185, 1638-1648.	3.8	170
164	Substrate stress relaxation regulates cell spreading. Nature Communications, 2015, 6, 6364.	12.8	637
165	Versatile click alginate hydrogels crosslinked via tetrazine–norbornene chemistry. Biomaterials, 2015, 50, 30-37.	11.4	238
166	In Vivo Targeting through Click Chemistry. ChemMedChem, 2015, 10, 617-620.	3.2	28
167	Alginate and DNA Gels Are Suitable Delivery Systems for Diabetic Wound Healing. International Journal of Lower Extremity Wounds, 2015, 14, 146-153.	1.1	30
168	Engineered materials for cancer immunotherapy. Nano Today, 2015, 10, 511-531.	11.9	96
169	From Skeletal Development to Tissue Engineering: Lessons from the Micromass Assay. Tissue Engineering - Part B: Reviews, 2015, 21, 427-437.	4.8	18
170	Biomaterials based strategies for skeletal muscle tissue engineering: Existing technologies and future trends. Biomaterials, 2015, 53, 502-521.	11.4	347
171	A light-reflecting balloon catheter for atraumatic tissue defect repair. Science Translational Medicine, 2015, 7, 306ra149.	12.4	34
172	On-demand drug delivery from local depots. Journal of Controlled Release, 2015, 219, 8-17.	9.9	123
173	Injectable cryogel-based whole-cell cancer vaccines. Nature Communications, 2015, 6, 7556.	12.8	312
174	Engineered composite fascia for stem cell therapy in tissue repair applications. Acta Biomaterialia, 2015, 26, 1-12.	8.3	23
175	Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated boneÂformation. Nature Materials, 2015, 14, 1269-1277.	27.5	390
176	Regenerative medicine: Current therapies and future directions. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14452-14459.	7.1	651
177	Manipulating the Intersection of Angiogenesis and Inflammation. Annals of Biomedical Engineering, 2015, 43, 628-640.	2.5	27
178	Injectable, spontaneously assembling, inorganic scaffolds modulate immune cells in vivo and increase vaccine efficacy. Nature Biotechnology, 2015, 33, 64-72.	17.5	436
179	The CLEC-2–podoplanin axis controls the contractility of fibroblastic reticular cells and lymph node microarchitecture. Nature Immunology, 2015, 16, 75-84.	14.5	233
180	Biomaterial-based delivery for skeletal muscle repair. Advanced Drug Delivery Reviews, 2015, 84, 188-197.	13.7	105

#	Article	IF	CITATIONS
181	The Effect of Growth-Mimicking Continuous Strain on the Early Stages of Skeletal Development in Micromass Culture. PLoS ONE, 2015, 10, e0124948.	2.5	6
182	Changing the Mindset in Life Sciences Toward Translation: A Consensus. Science Translational Medicine, 2014, 6, 264cm12.	12.4	42
183	Pro-angiogenic factors enhance pericyte function during angiogenesis. , 2014, , .		0
184	Sustained Delivery of VEGF Maintains Innervation and Promotes Reperfusion in Ischemic Skeletal Muscles Via NGF/GDNF Signaling. Molecular Therapy, 2014, 22, 1243-1253.	8.2	77
185	Self-folding mobile microrobots for biomedical applications. , 2014, , .		15
186	Targeted Delivery: An Integrated Microrobotic Platform for On-Demand, Targeted Therapeutic Interventions (Adv. Mater. 6/2014). Advanced Materials, 2014, 26, 951-951.	21.0	3
187	Photoactivation of Endogenous Latent Transforming Growth Factor–β1 Directs Dental Stem Cell Differentiation for Regeneration. Science Translational Medicine, 2014, 6, 238ra69.	12.4	206
188	Hydrogel-based system for mesenchymal stem cell recruitment. , 2014, , .		0
189	Rapid and Extensive Collapse from Electrically Responsive Macroporous Hydrogels. Advanced Healthcare Materials, 2014, 3, 500-507.	7.6	40
190	Injectable, porous, and cell-responsive gelatin cryogels. Biomaterials, 2014, 35, 2477-2487.	11.4	266
191	Minimally Invasive Approach to the Repair of Injured Skeletal Muscle With a Shape-memory Scaffold. Molecular Therapy, 2014, 22, 1441-1449.	8.2	78
192	An Integrated Microrobotic Platform for Onâ€Đemand, Targeted Therapeutic Interventions. Advanced Materials, 2014, 26, 952-957.	21.0	259
193	A Bioinspired Soft Actuated Material. Advanced Materials, 2014, 26, 1200-1206.	21.0	210
194	Ultrasound-triggered disruption and self-healing of reversibly cross-linked hydrogels for drug delivery and enhanced chemotherapy. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9762-9767.	7.1	372
195	Influence of the stiffness of three-dimensional alginate/collagen-I interpenetrating networks on fibroblast biology. Biomaterials, 2014, 35, 8927-8936.	11.4	226
196	The Young Innovators of Cellular and Molecular Bioengineering. Cellular and Molecular Bioengineering, 2014, 7, 291-292.	2.1	0
197	Biphasic Ferrogels for Triggered Drug and Cell Delivery. Advanced Healthcare Materials, 2014, 3, 1869-1876.	7.6	126
198	Identification of Immune Factors Regulating Antitumor Immunity Using Polymeric Vaccines with Multiple Adjuvants. Cancer Research, 2014, 74, 1670-1681.	0.9	91

#	Article	IF	CITATIONS
199	Effect of Pore Structure of Macroporous Poly(Lactide- <i>co</i> -Glycolide) Scaffolds on the <i>in Vivo</i> Enrichment of Dendritic Cells. ACS Applied Materials & Interfaces, 2014, 6, 8505-8512.	8.0	38
200	Refilling drug delivery depots through the blood. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12722-12727.	7.1	84
201	Multi-lineage MSC Differentiation <i>via</i> Engineered Morphogen Fields. Journal of Dental Research, 2014, 93, 1250-1257.	5.2	24
202	Bone regeneration via novel macroporous CPC scaffolds in critical-sized cranial defects in rats. Dental Materials, 2014, 30, e199-e207.	3.5	41
203	Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nature Materials, 2014, 13, 970-978.	27.5	689
204	Comparison of biomaterial delivery vehicles for improving acute retention of stem cells in the infarcted heart. Biomaterials, 2014, 35, 6850-6858.	11.4	140
205	In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles. Nature Communications, 2013, 4, 2326.	12.8	303
206	Ca2+ released from calcium alginate gels can promote inflammatory responses in vitro and in vivo. Acta Biomaterialia, 2013, 9, 9281-9291.	8.3	78
207	Performance and biocompatibility of extremely tough alginate/polyacrylamide hydrogels. Biomaterials, 2013, 34, 8042-8048.	11.4	282
208	Macroscale delivery systems for molecular and cellular payloads. Nature Materials, 2013, 12, 1004-1017.	27.5	251
209	Inflammatory Cytokines Presented from Polymer Matrices Differentially Generate and Activate DCs In Situ. Advanced Functional Materials, 2013, 23, 4621-4628.	14.9	59
210	Enhancing microvascular formation and vessel maturation through temporal control over multiple pro-angiogenic and pro-maturation factors. Biomaterials, 2013, 34, 9201-9209.	11.4	165
211	Materials based tumor immunotherapy vaccines. Current Opinion in Immunology, 2013, 25, 238-245.	5.5	53
212	Fibroblasts Derived from Human Pluripotent Stem Cells Activate Angiogenic Responses In Vitro and In Vivo. PLoS ONE, 2013, 8, e83755.	2.5	24
213	Chemotaxis of Mesenchymal Stem Cells in a Microfluidic Device. Materials Research Society Symposia Proceedings, 2012, 1498, 67-72.	0.1	0
214	Injectable preformed scaffolds with shape-memory properties. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19590-19595.	7.1	411
215	Highly stretchable and tough hydrogels. Nature, 2012, 489, 133-136.	27.8	4,089
216	Design and Fabrication of a Biodegradable, Covalently Crosslinked Shape-Memory Alginate Scaffold for Cell and Growth Factor Delivery. Tissue Engineering - Part A, 2012, 18, 2000-2007.	3.1	99

#	Article	IF	CITATIONS
217	Surface Modification with Alginate-Derived Polymers for Stable, Protein-Repellent, Long-Circulating Gold Nanoparticles. ACS Nano, 2012, 6, 4796-4805.	14.6	53
218	Biomaterial delivery of morphogens to mimic the natural healing cascade in bone. Advanced Drug Delivery Reviews, 2012, 64, 1257-1276.	13.7	210
219	Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks. Nature Immunology, 2012, 13, 499-510.	14.5	416
220	Alginate: Properties and biomedical applications. Progress in Polymer Science, 2012, 37, 106-126.	24.7	5,658
221	Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. Journal of the Royal Society Interface, 2011, 8, 153-170.	3.4	1,150
222	Spatiotemporal delivery of bone morphogenetic protein enhances functional repair of segmental bone defects. Bone, 2011, 49, 485-492.	2.9	135
223	The efficacy of intracranial PLG-based vaccines is dependent on direct implantation into brain tissue. Journal of Controlled Release, 2011, 154, 249-257.	9.9	24
224	The role of multifunctional delivery scaffold in the ability of cultured myoblasts to promote muscle regeneration. Biomaterials, 2011, 32, 8905-8914.	11.4	124
225	Targeted Delivery of Nanoparticles to Ischemic Muscle for Imaging and Therapeutic Angiogenesis. Nano Letters, 2011, 11, 694-700.	9.1	135
226	Biomaterial-Based Vaccine Induces Regression of Established Intracranial Glioma in Rats. Pharmaceutical Research, 2011, 28, 1074-1080.	3.5	36
227	Bioimaging: Metal-Enhanced Fluorescence to Quantify Bacterial Adhesion (Adv. Mater. 12/2011). Advanced Materials, 2011, 23, H126-H126.	21.0	0
228	An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials, 2011, 32, 65-74.	11.4	454
229	Active scaffolds for on-demand drug and cell delivery. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 67-72.	7.1	630
230	Patterning alginate hydrogels using light-directed release of caged calcium in a microfluidic device. Biomedical Microdevices, 2010, 12, 145-151.	2.8	72
231	Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nature Materials, 2010, 9, 518-526.	27.5	1,319
232	Immunologically Active Biomaterials for Cancer Therapy. Current Topics in Microbiology and Immunology, 2010, 344, 279-297.	1.1	11
233	Mimicking nature by codelivery of stimulant and inhibitor to create temporally stable and spatially restricted angiogenic zones. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17933-17938.	7.1	61
234	Functional muscle regeneration with combined delivery of angiogenesis and myogenesis factors. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3287-3292.	7.1	374

#	Article	IF	CITATIONS
235	Stress-relaxation behavior in gels with ionic and covalent crosslinks. Journal of Applied Physics, 2010, 107, 63509.	2.5	287
236	In Situ Regulation of DC Subsets and T Cells Mediates Tumor Regression in Mice. Science Translational Medicine, 2009, 1, 8ra19.	12.4	211
237	Surface Patterning: Spatiotemporal Control over Molecular Delivery and Cellular Encapsulation from Electropolymerized Micro- and Nanopatterned Surfaces(Adv. Funct. Mater. 18/2009). Advanced Functional Materials, 2009, 19, NA-NA.	14.9	0
238	Controlled Growth Factor Delivery for Tissue Engineering. Advanced Materials, 2009, 21, 3269-3285.	21.0	365
239	Shearâ€reversibly Crosslinked Alginate Hydrogels for Tissue Engineering. Macromolecular Bioscience, 2009, 9, 895-901.	4.1	98
240	Inspiration and application in the evolution of biomaterials. Nature, 2009, 462, 426-432.	27.8	717
241	Infection-mimicking materials to program dendritic cells in situ. Nature Materials, 2009, 8, 151-158.	27.5	386
242	Cancer cell angiogenic capability is regulated by 3D culture and integrin engagement. Proceedings of the United States of America, 2009, 106, 399-404.	7.1	280
243	Sustained GM-CSF and PEI condensed pDNA presentation increases the level and duration of gene expression in dendritic cells. Journal of Controlled Release, 2008, 132, 273-278.	9.9	30
244	Cell Delivery Mechanisms for Tissue Repair. Cell Stem Cell, 2008, 2, 205-213.	11.1	316
245	Material-based deployment enhances efficacy of endothelial progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14347-14352.	7.1	199
246	Angiogenic effects of sequential release of VEGF-A165 and PDGF-BB with alginate hydrogels after myocardial infarction. Cardiovascular Research, 2007, 75, 178-185.	3.8	329
247	Regulating Myoblast Phenotype Through Controlled Gel Stiffness and Degradation. Tissue Engineering, 2007, 13, 1431-1442.	4.6	195
248	Converging Cell Therapy with Biomaterials. , 2007, , 591-609.		3
249	Breast Reconstruction. , 2007, , 519-534.		0
250	Regenerative medicine in orthopaedic surgery. Journal of Orthopaedic Research, 2007, 25, 1261-1268.	2.3	32
251	Polymers for pro- and anti-angiogenic therapy. Biomaterials, 2007, 28, 2069-2076.	11.4	86
252	Upregulation of bone cell differentiation through immobilization within a synthetic extracellular matrix. Biomaterials, 2007, 28, 3644-3655.	11.4	139

#	Article	IF	CITATIONS
253	Engineering tumors with 3D scaffolds. Nature Methods, 2007, 4, 855-860.	19.0	779
254	Spatiotemporal control of vascular endothelial growth factor delivery from injectable hydrogels enhances angiogenesis. Journal of Thrombosis and Haemostasis, 2007, 5, 590-598.	3.8	292
255	Spatiotemporal control over growth factor signaling for therapeutic neovascularizationâ^†. Advanced Drug Delivery Reviews, 2007, 59, 1340-1350.	13.7	112
256	Host Immune Competence and Local Ischemia Affects the Functionality of Engineered Vasculature. Microcirculation, 2007, 14, 77-88.	1.8	19
257	RGD Island Spacing Controls Phenotype of Primary Human Fibroblasts Adhered to Ligand-Organized Hydrogels. Macromolecular Research, 2007, 15, 469-472.	2.4	12
258	Spatio–temporal VEGF and PDGF Delivery Patterns Blood Vessel Formation and Maturation. Pharmaceutical Research, 2007, 24, 258-264.	3.5	363
259	Fluorescent resonance energy transfer: A tool for probing molecular cell–biomaterial interactions in three dimensions. Biomaterials, 2007, 28, 2424-2437.	11.4	79
260	Cell Instructive Polymers. , 2006, 102, 113-137.		20
261	Alginate Hydrogels as Biomaterials. Macromolecular Bioscience, 2006, 6, 623-633.	4.1	1,500
262	Gas Foaming to Fabricate Polymer Scaffolds in Tissue Engineering. , 2005, , 155-167.		5
263	Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials, 2005, 26, 2455-2465.	11.4	565
264	Actively regulating bioengineered tissue and organ formation. Orthodontics and Craniofacial Research, 2005, 8, 141-144.	2.8	10
265	Sustained Vascular Endothelial Growth Factor Delivery Enhances Angiogenesis and Perfusion in Ischemic Hind Limb. Pharmaceutical Research, 2005, 22, 1110-1116.	3.5	120
266	Cellular Cross-linking of Peptide Modified Hydrogels. Journal of Biomechanical Engineering, 2005, 127, 220-228.	1.3	49
267	Modified Alginates for Tissue Engineering. , 2005, , 301-315.		0
268	Controlling Fracture Behavior of Polymeric Hydrogels. Materials Research Society Symposia Proceedings, 2004, 844, 1.	0.1	0
269	Nanoscale RGD Peptide Organization Regulates Cell Proliferation and Differentiation. Materials Research Society Symposia Proceedings, 2004, 845, 59.	0.1	0
270	Peptide and Protein Presenting Materials for Tissue Engineering. Advanced Materials, 2004, 16, 17-25.	21.0	120

#	Article	IF	CITATIONS
271	Controlling Degradation of Hydrogels via the Size of Crosslinked Junctions. Advanced Materials, 2004, 16, 1917-1921.	21.0	112
272	Controlled degradation of hydrogels using multi-functional cross-linking molecules. Biomaterials, 2004, 25, 2461-2466.	11.4	153
273	The tensile properties of alginate hydrogels. Biomaterials, 2004, 25, 3187-3199.	11.4	469
274	Nanoscale Adhesion Ligand Organization Regulates Osteoblast Proliferation and Differentiation. Nano Letters, 2004, 4, 1501-1506.	9.1	164
275	SHAPE RETAINING INJECTABLE HYDROGELS FOR MINIMALLY INVASIVE BULKING. Journal of Urology, 2004, 172, 763-768.	0.4	48
276	Biomaterials for Cell Immobilization. Focus on Biotechnology, 2004, , 15-32.	0.4	7
277	Synthetic Extracellular Matrices for Tissue Engineering and Regeneration. Current Topics in Developmental Biology, 2004, 64, 181-205.	2.2	75
278	Dual growth factor delivery and controlled scaffold degradation enhance in vivo bone formation by transplanted bone marrow stromal cells. Bone, 2004, 35, 562-569.	2.9	376
279	Controlling Rigidity and Degradation of Alginate Hydrogels via Molecular Weight Distribution. Biomacromolecules, 2004, 5, 1720-1727.	5.4	304
280	SHAPE-DEFINING SCAFFOLDS FOR MINIMALLY INVASIVE TISSUE ENGINEERING. Transplantation, 2004, 77, 1798-1803.	1.0	82
281	Polysaccharide-Based Hydrogels in Tissue Engineering. , 2004, , .		2
282	Controlled Growth Factor Delivery for Tissue Engineering. ACS Symposium Series, 2003, , 73-83.	0.5	6
283	Protein-based signaling systems in tissue engineering. Current Opinion in Biotechnology, 2003, 14, 559-565.	6.6	166
284	Comparison of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in SCID mice. Journal of Controlled Release, 2003, 87, 49-56.	9.9	161
285	Hydrogel Formation via Cell Crosslinking. Advanced Materials, 2003, 15, 1828-1832.	21.0	113
286	Designing alginate hydrogels to maintain viability of immobilized cells. Biomaterials, 2003, 24, 4023-4029.	11.4	318
287	Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials, 2003, 24, 4337-4351.	11.4	4,376
288	Cyclic strain enhances matrix mineralization by adult human mesenchymal stem cells via the extracellular signal-regulated kinase (ERK1/2) signaling pathway. Journal of Biomechanics, 2003, 36, 1087-1096.	2.1	274

#	Article	IF	CITATIONS
289	Nondestructively Probing the Cross-Linking Density of Polymeric Hydrogels. Macromolecules, 2003, 36, 7887-7890.	4.8	14
290	Regulating Bone Formation <i>via</i> Controlled Scaffold Degradation. Journal of Dental Research, 2003, 82, 903-908.	5.2	304
291	Independent Control of Rigidity and Toughness of Polymeric Hydrogels. Macromolecules, 2003, 36, 4582-4588.	4.8	191
292	Cyclic strain inhibits switching of smooth muscle cells to an osteoblastâ€like phenotype. FASEB Journal, 2003, 17, 1-21.	0.5	57
293	Regulation of Cellular Response to Mechanical Signals by Matrix Design. , 2003, , 291-304.		2
294	Engineering growing tissues. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12025-12030.	7.1	360
295	Evaluation of Chain Stiffness of Partially Oxidized Polyguluronate. Biomacromolecules, 2002, 3, 1129-1134.	5.4	54
296	Biomaterials to Spatially Regulate Cell Fate. Advanced Materials, 2002, 14, 886.	21.0	45
297	Engineering vascular networks in porous polymer matrices. Journal of Biomedical Materials Research Part B, 2002, 60, 668-678.	3.1	207
298	Alginate type and RGD density control myoblast phenotype. Journal of Biomedical Materials Research Part B, 2002, 60, 217-223.	3.1	355
299	Decoupling the dependence of rheological/mechanical properties of hydrogels from solids concentration. Polymer, 2002, 43, 6239-6246.	3.8	157
300	Alginate type and RGD density control myoblast phenotype. Journal of Biomedical Materials Research Part B, 2002, 60, 217-223.	3.1	9
301	Synthesis of Hydrogels. , 2002, , 653-662.		7
302	Hydrogels for Tissue Engineering. Chemical Reviews, 2001, 101, 1869-1880.	47.7	4,623
303	Controlled Growth Factor Delivery By Mechanical Stimulation. Materials Research Society Symposia Proceedings, 2001, 711, 1.	0.1	0
304	Craniofacial Tissue Engineering. Critical Reviews in Oral Biology and Medicine, 2001, 12, 64-75.	4.4	166
305	Cell-interactive polymers for tissue engineering. Fibers and Polymers, 2001, 2, 51-57.	2.1	14
306	Hydrogels for combination delivery of antineoplastic agents. Biomaterials, 2001, 22, 2625-2633.	11.4	150

#	Article	IF	CITATIONS
307	Injection molding of chondrocyte/alginate constructs in the shape of facial implants. Journal of Biomedical Materials Research Part B, 2001, 55, 503-511.	3.1	256
308	Degradable and injectable poly(aldehyde guluronate) hydrogels for bone tissue engineering. Journal of Biomedical Materials Research Part B, 2001, 56, 228-233.	3.1	157
309	Controlled Drug Delivery from Polymers by Mechanical Signals. Advanced Materials, 2001, 13, 837-839.	21.0	90
310	Polymeric system for dual growth factor delivery. Nature Biotechnology, 2001, 19, 1029-1034.	17.5	1,642
311	Degradation of Partially Oxidized Alginate and Its Potential Application for Tissue Engineering. Biotechnology Progress, 2001, 17, 945-950.	2.6	573
312	Promoting Angiogenesis in Engineered Tissues. Journal of Drug Targeting, 2001, 9, 397-406.	4.4	62
313	Using HSV-Thymidine Kinase for Safety in an Allogeneic Salivary Graft Cell Line. Tissue Engineering, 2001, 7, 405-413.	4.6	13
314	Growth of continuous bonelike mineral within porous poly(lactide-co-glycolide) scaffoldsin vitro. Journal of Biomedical Materials Research Part B, 2000, 50, 50-58.	3.1	263
315	Comparative study of seeding methods for three-dimensional polymeric scaffolds. Journal of Biomedical Materials Research Part B, 2000, 51, 642-649.	3.1	118
316	Comparative study of seeding methods for three-dimensional polymeric scaffolds. Journal of Biomedical Materials Research Part B, 2000, 52, 576-576.	3.1	31
317	Sustained and Controlled Release of Daunomycin from Cross‣inked Poly(aldehyde guluronate) Hydrogels. Journal of Pharmaceutical Sciences, 2000, 89, 910-919.	3.3	66
318	Porous carriers for biomedical applications based on alginate hydrogels. Biomaterials, 2000, 21, 1921-1927.	11.4	308
319	Smooth muscle cell adhesion to tissue engineering scaffolds. Biomaterials, 2000, 21, 2025-2032.	11.4	132
320	Sustained release of vascular endothelial growth factor from mineralized poly(lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials, 2000, 21, 2521-2527.	11.4	388
321	Controlled growth factor release from synthetic extracellular matrices. Nature, 2000, 408, 998-1000.	27.8	454
322	Delivering DNA with polymer matrices: applications in tissue engineering and gene therapy. Pharmaceutical Science & Technology Today, 2000, 3, 381-384.	0.7	24
323	Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery. Journal of Controlled Release, 2000, 64, 91-102.	9.9	482
324	Growth Factor Delivery from Tissue Engineering Matrices: Inducing Angiogenesis to Enhance Transplanted Cell Engraftment. ACS Symposium Series, 2000, , 157-166.	0.5	3

#	Article	IF	CITATIONS
325	Dynamic Seeding and in Vitro Culture of Hepatocytes in a Flow Perfusion System. Tissue Engineering, 2000, 6, 39-44.	4.6	134
326	Scaffolds for Engineering Smooth Muscle Under Cyclic Mechanical Strain Conditions. Journal of Biomechanical Engineering, 2000, 122, 210-215.	1.3	153
327	Biomaterials in Liver Tissue Engineering. , 2000, 1, 65-73.		2
328	Engineered Bone Development from a Pre-Osteoblast Cell Line on Three-Dimensional Scaffolds. Tissue Engineering, 2000, 6, 605-617.	4.6	214
329	Controlling Mechanical and Swelling Properties of Alginate Hydrogels Independently by Cross-Linker Type and Cross-Linking Density. Macromolecules, 2000, 33, 4291-4294.	4.8	412
330	THE IMPACT OF TISSUE ENGINEERING ON DENTISTRY. Journal of the American Dental Association, 2000, 131, 309-318.	1.5	58
331	Degradation Behavior of Covalently Cross-Linked Poly(aldehyde guluronate) Hydrogels. Macromolecules, 2000, 33, 97-101.	4.8	194
332	Growth of continuous bonelike mineral within porous poly(lactide-co-glycolide) scaffolds in vitro. , 2000, 50, 50.		2
333	Growth of continuous bonelike mineral within porous poly(lactide-co-glycolide) scaffolds in vitro. Journal of Biomedical Materials Research Part B, 2000, 50, 50.	3.1	13
334	BREAST RECONSTRUCTION., 2000, , 409-423.		11
335	Synthesis of cross-linked poly(aldehyde guluronate) hydrogels. Polymer, 1999, 40, 3575-3584.	3.8	212
336	Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials, 1999, 20, 45-53.	11.4	2,025
337	Cyclic mechanical strain regulates the development of engineered smooth muscle tissue. Nature Biotechnology, 1999, 17, 979-983.	17.5	427
338	Reâ€engineering the Functions of a Terminally Differentiated Epithelial Cell in Vivo. Annals of the New York Academy of Sciences, 1999, 875, 294-300.	3.8	54
339	Controlled delivery of inductive proteins, plasmid DNA and cells from tissue engineering matrices. Journal of Periodontal Research, 1999, 34, 413-419.	2.7	121
340	DNA delivery from polymer matrices for tissue engineering. Nature Biotechnology, 1999, 17, 551-554.	17.5	651
341	Growing New Organs. Scientific American, 1999, 280, 60-65.	1.0	320
342	Parameters affecting cellular adhesion to polylactide films. Journal of Biomaterials Science, Polymer Edition, 1999, 10, 147-161.	3.5	58

#	Article	IF	CITATIONS
343	Rigidity of Two-Component Hydrogels Prepared from Alginate and Poly(ethylene glycol)â^'Diamines. Macromolecules, 1999, 32, 5561-5566.	4.8	218
344	Vascular Endothelial Growth Factor (VEGF)-Mediated Angiogenesis Is Associated with Enhanced Endothelial Cell Survival and Induction of Bcl-2 Expression. American Journal of Pathology, 1999, 154, 375-384.	3.8	591
345	Engineered Smooth Muscle Tissues: Regulating Cell Phenotype with the Scaffold. Experimental Cell Research, 1999, 251, 318-328.	2.6	187
346	Development of Technologies Aiding Large-Tissue Engineering. Biotechnology Progress, 1998, 14, 134-140.	2.6	103
347	In vitro and In vivo Models for the Reconstruction of Intercellular Signalinga,. Annals of the New York Academy of Sciences, 1998, 842, 188-194.	3.8	39
348	Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends in Biotechnology, 1998, 16, 224-230.	9.3	850
349	Optimizing seeding and culture methods to engineer smooth muscle tissue on biodegradable polymer matrices. Biotechnology and Bioengineering, 1998, 57, 46-54.	3.3	233
350	Engineering smooth muscle tissue with a predefined structure. , 1998, 41, 322-332.		196
351	Cellular ingrowth and thickness changes in poly-L-lactide and polyglycolide matrices implanted subcutaneously in the rat. , 1998, 41, 412-421.		54
352	Open pore biodegradable matrices formed with gas foaming. Journal of Biomedical Materials Research Part B, 1998, 42, 396-402.	3.1	700
353	Release from alginate enhances the biological activity of vascular endothelial growth factor. Journal of Biomaterials Science, Polymer Edition, 1998, 9, 1267-1278.	3.5	170
354	Role of synthetic extracellular matrix in development of engineered dental pulp. Journal of Biomaterials Science, Polymer Edition, 1998, 9, 749-764.	3.5	115
355	PEG Cross-Linked Alginate Hydrogels with Controlled Mechanical Properties. Materials Research Society Symposia Proceedings, 1998, 530, 37.	0.1	3
356	Optimizing seeding and culture methods to engineer smooth muscle tissue on biodegradable polymer matrices. Biotechnology and Bioengineering, 1998, 57, 46-54.	3.3	19
357	Open pore biodegradable matrices formed with gas foaming. , 1998, 42, 396.		1
358	Open pore biodegradable matrices formed with gas foaming. Journal of Biomedical Materials Research Part B, 1998, 42, 396-402.	3.1	38
359	Biodegradable Polymer Matrices in Dental Tissue Engineering. , 1998, , 443-459.		0
360	Increased Vascularization and Heterogeneity of Vascular Structures Occurring in Polyglycolide Matrices Containing Aortic Endothelial Cells Implanted in the Rat. Tissue Engineering, 1997, 3, 149-160.	4.6	63

#	Article	IF	CITATIONS
361	Long-term engraftment of hepatocytes transplanted on biodegradable polymer sponges. , 1997, 37, 413-420.		217
362	Localized delivery of epidermal growth factor improves the survival of transplanted hepatocytes. , 1996, 50, 422-429.		87
363	Stabilized polyglycolic acid fibre-based tubes for tissue engineering. Biomaterials, 1996, 17, 115-124.	11.4	357
364	Novel approach to fabricate porous sponges of poly(d,l-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials, 1996, 17, 1417-1422.	11.4	1,008
365	Tissue engineering using synthetic extracellular matrices. Nature Medicine, 1996, 2, 824-826.	30.7	212
366	Engineering Dental Pulp-like Tissue in Vitro. Biotechnology Progress, 1996, 12, 865-868.	2.6	131
367	Integrating Cell Transplantation and Controlled Drug Delivery Technologies to Engineer Liver Tissue. Materials Research Society Symposia Proceedings, 1995, 385, 43.	0.1	2
368	Integrating cell Transplantation and Controlled Drug Delivery Technologies to Engineer Liver Tissue. Materials Research Society Symposia Proceedings, 1995, 394, 105.	0.1	4
369	Biodegradable sponges for hepatocyte transplantation. Journal of Biomedical Materials Research Part B, 1995, 29, 959-965.	3.1	181
370	Fabricating Tubular Devices from Polymers of Lactic and Glycolic Acid for Tissue Engineering. Tissue Engineering, 1995, 1, 107-118.	4.6	82
371	Cytoskeletal filament assembly and the control of cell spreading and function by extracellular matrix. Journal of Cell Science, 1995, 108 (Pt 6), 2311-20.	2.0	57
372	Extracellular matrix controls tubulin monomer levels in hepatocytes by regulating protein turnover Molecular Biology of the Cell, 1994, 5, 1281-1288.	2.1	52
373	Design and Fabrication of Biodegradable Polymer Devices to Engineer Tubular Tissues. Cell Transplantation, 1994, 3, 203-210.	2.5	162
374	The Mesentery as a Laminated Vascular Bed for Hepatocyte Transplantation. Cell Transplantation, 1994, 3, 273-281.	2.5	59
375	Cartilage Engineered in Predetermined Shapes Employing Cell Transplantation on Synthetic Biodegradable Polymers. Plastic and Reconstructive Surgery, 1994, 94, 233-237.	1.4	192
376	Transplantation of hepatocytes using porous, biodegradable sponges. Transplantation Proceedings, 1994, 26, 3425-6.	0.6	72
377	Tissue engineering using cells and synthetic polymers. Transplantation Reviews, 1993, 7, 153-162.	2.9	41
378	Stabilizing Fiber-Based Cell Delivery Devices by Physically Bonding Adjacent Fibers. Materials Research Society Symposia Proceedings, 1993, 331, 47.	0.1	2

#	Article	IF	CITATIONS
379	Switching from differentiation to growth in hepatocytes: Control by extracellular matrix. Journal of Cellular Physiology, 1992, 151, 497-505.	4.1	449
380	Transplantation of enterocytes utilizing polymer-cell constructs to produce a neointestine. Transplantation Proceedings, 1992, 24, 3009-11.	0.6	33
381	Induction of Hepatocyte Differentiation by the Extracellular Matrix and an RGD-Containing Synthetic Peptide. Materials Research Society Symposia Proceedings, 1991, 252, 199.	0.1	17
382	Principles of Tissue Engineering and Reconstruction Using Polymer-Cell Constructs. Materials Research Society Symposia Proceedings, 1991, 252, 345.	0.1	28
383	Polymeric Systems for Bioinspired Delivery of Angiogenic Molecules. , 0, , 191-221.		22
384	Scaffolds, Polymer: Gas Foaming Tissue Engineering. , 0, , 7036-7044.		0