Jose Luis Reyes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/62158/publications.pdf

Version: 2024-02-01

				159585]	197818
50		4,991		30		49
papers		citations		h-index		g-index
5 1		F 1		F 1		5.000
51		51		51		5696
all docs		docs citations		times ranked		citing authors
	papers 51	papers 51	papers citations 51 51	50 4,991 citations 51 51	papers citations h-index 51 51 51	50 4,991 30 papers citations h-index 51 51 51

#	Article	IF	CITATIONS
1	Methylation of Subtelomeric Chromatin Modifies the Expression of the IncRNA TERRA, Disturbing Telomere Homeostasis. International Journal of Molecular Sciences, 2022, 23, 3271.	4.1	1
2	A birds'â€eye view of the activity and specificity of the <scp>mRNA m⁶A</scp> methyltransferase complex. Wiley Interdisciplinary Reviews RNA, 2021, 12, e1618.	6.4	34
3	The canonical RdDM pathway mediates the control of seed germination timing under salinity. Plant Journal, 2021, 105, 691-707.	5.7	4
4	MicroRNA Zma-miR528 Versatile Regulation on Target mRNAs during Maize Somatic Embryogenesis. International Journal of Molecular Sciences, 2021, 22, 5310.	4.1	9
5	Origin and Evolutionary Dynamics of the miR2119 and ADH1 Regulatory Module in Legumes. Genome Biology and Evolution, 2020, 12, 2355-2369.	2.5	7
6	Early events leading to water deficit responses in the liverwort Marchantia polymorpha. Environmental and Experimental Botany, 2020, 178, 104172.	4.2	6
7	Determining the Protective Activity of IDPs Under Partial Dehydration and Freeze-Thaw Conditions. Methods in Molecular Biology, 2020, 2141, 519-528.	0.9	3
8	Northern Blot Analysis of microRNAs and Other Small RNAs in Plants. Methods in Molecular Biology, 2019, 1932, 121-129.	0.9	14
9	A dicistronic precursor encoding miR398 and the legumeâ€specific miR2119 coregulates CSD1 and ADH1 mRNAs in response to water deficit. Plant, Cell and Environment, 2019, 42, 133-144.	5.7	29
10	Small RNA differential expression and regulation in Tuxpe $\tilde{A}\pm 0$ maize embryogenic callus induction and establishment. Plant Physiology and Biochemistry, 2018, 122, 78-89.	5.8	22
11	The Legume miR1514a modulates a NAC transcription factor transcript to trigger phasiRNA formation in response to drought. Journal of Experimental Botany, 2017, 68, erw380.	4.8	40
12	Insights into the function of the phasiRNA-triggering miR1514 in response to stress in legumes. Plant Signaling and Behavior, 2017, 12, e1284724.	2.4	10
13	The key role of small RNAs in the making of a leaf. Indian Journal of Plant Physiology, 2017, 22, 393-400.	0.8	1
14	Group 4 late embryogenesis abundant proteins as a model to study intrinsically disordered proteins in plants. Plant Signaling and Behavior, 2017, 12, e1343777.	2.4	35
15	Gene Silencing of Argonaute5 Negatively Affects the Establishment of the Legume-Rhizobia Symbiosis. Genes, 2017, 8, 352.	2.4	19
16	The Class II Trehalose 6-phosphate Synthase Gene PvTPS9 Modulates Trehalose Metabolism in Phaseolus vulgaris Nodules. Frontiers in Plant Science, 2016, 7, 1589.	3.6	16
17	The Unstructured N-terminal Region of Arabidopsis Group 4 Late Embryogenesis Abundant (LEA) Proteins Is Required for Folding and for Chaperone-like Activity under Water Deficit. Journal of Biological Chemistry, 2016, 291, 10893-10903.	3.4	61
18	Genome-wide identification of the Phaseolus vulgaris sRNAome using small RNA and degradome sequencing. BMC Genomics, 2015, 16, 423.	2.8	49

#	Article	IF	Citations
19	The Micro-RNA172c-APETALA2-1 Node as a Key Regulator of the Common Bean- <i>Rhizobium etli</i> Nitrogen Fixation Symbiosis. Plant Physiology, 2015, 168, 273-291.	4.8	134
20	Regulation of Copper Homeostasis and Biotic Interactions by MicroRNA 398b in Common Bean. PLoS ONE, 2014, 9, e84416.	2.5	109
21	A Group 6 Late Embryogenesis Abundant Protein from Common Bean Is a Disordered Protein with Extended Helical Structure and Oligomer-forming Properties. Journal of Biological Chemistry, 2014, 289, 31995-32009.	3.4	33
22	Group 1 LEA proteins, an ancestral plant protein group, are also present in other eukaryotes, and in the archeae and bacteria domains. Molecular Genetics and Genomics, 2013, 288, 503-517.	2.1	47
23	Determining Abundance of MicroRNAs and Other Small RNAs in Legumes. Methods in Molecular Biology, 2013, 1069, 81-92.	0.9	1
24	Signaling by MicroRNAs in Response to Abiotic Stress. , 2013, , 51-67.		1
25	Two Common Bean Genotypes with Contrasting Response to Phosphorus Deficiency Show Variations in the microRNA 399-Mediated PvPHO2 Regulation within the PvPHR1 Signaling Pathway. International Journal of Molecular Sciences, 2013, 14, 8328-8344.	4.1	37
26	The Phaseolus vulgaris miR159a precursor encodes a second differentially expressed microRNA. Plant Molecular Biology, 2012, 80, 103-115.	3.9	17
27	Non-coding RNAs in the plant response to abiotic stress. Planta, 2012, 236, 943-958.	3.2	44
28	Identification and characterization of microRNAs in Phaseolus vulgaris by high-throughput sequencing. BMC Genomics, 2012, 13, 83.	2.8	106
29	A general method of protein purification for recombinant unstructured non-acidic proteins. Protein Expression and Purification, 2011, 80, 47-51.	1.3	13
30	Late embryogenesis abundant proteins. Plant Signaling and Behavior, 2011, 6, 586-589.	2.4	99
31	MicroRNA expression profile in common bean (<i>Phaseolus vulgaris</i>) under nutrient deficiency stresses and manganese toxicity. New Phytologist, 2010, 187, 805-818.	7.3	174
32	Postâ€transcriptional gene regulation of salinity and drought responses by plant microRNAs. Plant, Cell and Environment, 2010, 33, 481-489.	5.7	177
33	Functional Analysis of the Group 4 Late Embryogenesis Abundant Proteins Reveals Their Relevance in the Adaptive Response during Water Deficit in Arabidopsis. Plant Physiology, 2010, 154, 373-390.	4.8	173
34	Cloning of Stress-Responsive MicroRNAs and other Small RNAs from Plants. Methods in Molecular Biology, 2010, 639, 239-251.	0.9	9
35	Conserved and novel miRNAs in the legume Phaseolus vulgaris in response to stress. Plant Molecular Biology, 2009, 70, 385-401.	3.9	235
36	First step in pre-miRNAs processing by human Dicer. Acta Pharmacologica Sinica, 2009, 30, 1177-1185.	6.1	35

#	Article	IF	CITATIONS
37	RcDhn5, a cold acclimationâ€responsive dehydrin from <i>Rhododendron catawbiense </i> rescues enzyme activity from dehydration effects in vitro and enhances freezing tolerance in <i>RcDhn5</i> â€overexpressing <i>Arabidopsis </i> plants. Physiologia Plantarum, 2008, 134, 583-597.	5.2	78
38	Functional dissection of Hydrophilins during <i>in vitro</i> freeze protection. Plant, Cell and Environment, 2008, 31, 1781-1790.	5.7	125
39	Essential role of MYB transcription factor: PvPHR1 and microRNA: PvmiR399 in phosphorusâ€deficiency signalling in common bean roots. Plant, Cell and Environment, 2008, 31, 1834-1843.	5.7	178
40	The <i> GIGANTEA </i> - Regulated MicroRNA172 Mediates Photoperiodic Flowering Independent of <i> CONSTANS </i> ii <i> Arabidopsis </i> ii > . Plant Cell, 2007, 19, 2736-2748.	6.6	438
41	ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant Journal, 2007, 49, 592-606.	5.7	689
42	Characterization of small RNAs derived from Citrus exocortis viroid (CEVd) in infected tomato plants. Virology, 2007, 367, 135-146.	2.4	74
43	Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nature Biotechnology, 2006, 24, 1420-1428.	17.5	519
44	Hydrophilins from distant organisms can protect enzymatic activities from water limitation effects in vitro. Plant, Cell and Environment, 2005, 28, 709-718.	5.7	153
45	microRNAâ€directed cleavage of <i>ATHB15</i> mRNA regulates vascular development in Arabidopsis inflorescence stems. Plant Journal, 2005, 42, 84-94.	5.7	334
46	Polarized Gene Expression Determines Woronin Body Formation at the Leading Edge of the Fungal Colony. Molecular Biology of the Cell, 2005, 16, 2651-2659.	2.1	76
47	Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biology, 2004, 5, R65.	9.6	367
48	Interactions between light and carbon signaling pathways in Arabidopsis. Genome Biology, 2004, 5, 213.	9.6	1
49	The C-terminal region of hPrp8 interacts with the conserved GU dinucleotide at the 5′ splice site. Rna, 1999, 5, 167-179.	3.5	87
50	Phylogenetic Relationships of Platyhelminthes Based on 18S Ribosomal Gene Sequences. Molecular Phylogenetics and Evolution, 1998, 10, 1-10.	2.7	63