Hak Soo Choi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6215470/publications.pdf

Version: 2024-02-01

387	42	20961
13,762	50	115
citations	h-index	g-index
158	158	16328
		citing authors
	tilites ranked	citing authors
		citations h-index 158 158

#	Article	IF	CITATIONS
1	Quickly evolving nearâ€infrared photoimmunotherapy provides multifaceted approach to modern cancer treatment. View, 2022, 3, 20200110.	5. 3	28
2	Tumorâ€Associated Immuneâ€Cellâ€Mediated Tumorâ€Targeting Mechanism with NIRâ€II Fluorescence Imaging. Advanced Materials, 2022, 34, e2106500.	21.0	36
3	Fast and Durable Intraoperative Nearâ€infrared Imaging of Ovarian Cancer Using Ultrabright Squaraine Fluorophores. Angewandte Chemie - International Edition, 2022, 61, .	13.8	10
4	Fast and Durable Intraoperative Nearâ€infrared Imaging of Ovarian Cancer Using Ultrabright Squaraine Fluorophores. Angewandte Chemie, 2022, 134, .	2.0	3
5	QuatCy-l ₂ and MHI-l ₂ in Photodynamic Therapy. ACS Medicinal Chemistry Letters, 2022, 13, 470-474.	2.8	3
6	Highly sensitive near-infrared SERS nanoprobes for in vivo imaging using gold-assembled silica nanoparticles with controllable nanogaps. Journal of Nanobiotechnology, 2022, 20, 130.	9.1	26
7	Injectable Thermosensitive Hydrogels for a Sustained Release of Iron Nanochelators. Advanced Science, 2022, 9, e2200872.	11.2	27
8	Novel Quantification of Real-Time Lymphatic Clearance: Immediate Lymphatic Reconstruction in a Large-Animal Model. Plastic and Reconstructive Surgery, 2022, 149, 130-141.	1.4	2
9	Reversal of genetic brain iron accumulation by N,N $\hat{a}\in^2$ -bis(2-mercaptoethyl)isophthalamide, a lipophilic metal chelator, in mice. Archives of Toxicology, 2022, , 1.	4.2	3
10	Topical pH Sensing NIR Fluorophores for Intraoperative Imaging and Surgery of Disseminated Ovarian Cancer. Advanced Science, 2022, 9, e2201416.	11.2	11
11	Neuroimaging Modalities in Alzheimer's Disease: Diagnosis and Clinical Features. International Journal of Molecular Sciences, 2022, 23, 6079.	4.1	19
12	A small molecule redistributes iron in ferroportin-deficient mice and patient-derived primary macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	11
13	Fluorescent nanodiamond – hyaluronate conjugates for target-specific molecular imaging. RSC Advances, 2021, 11, 23073-23081.	3.6	5
14	Enhancement of Wound Healing Efficacy by Increasing the Stability and Skinâ€Penetrating Property of bFGF Using 30Kc19αâ€Based Fusion Protein. Advanced Biology, 2021, 5, e2000176.	2.5	5
15	Nonâ€invasive in vivo monitoring of transplanted stem cells in <scp>3D</scp> â€bioprinted constructs using nearâ€infrared fluorescent imaging. Bioengineering and Translational Medicine, 2021, 6, e10216.	7.1	9
16	ZW800â€PEG: A Renal Clearable Zwitterionic Nearâ€Infrared Fluorophore for Potential Clinical Translation. Angewandte Chemie, 2021, 133, 13966-13971.	2.0	5
17	ZW800â€PEG: A Renal Clearable Zwitterionic Nearâ€Infrared Fluorophore for Potential Clinical Translation. Angewandte Chemie - International Edition, 2021, 60, 13847-13852.	13.8	36
18	Endogenous Stem Cellâ€Based In Situ Tissue Regeneration Using Electrostatically Interactive Hydrogel with a Newly Discovered Substance P Analog and VEGFâ€Mimicking Peptide. Small, 2021, 17, e2103244.	10.0	11

#	Article	IF	Citations
19	Near-Infrared Fluorescence Imaging of Carotid Plaques in an Atherosclerotic Murine Model. Biomolecules, 2021, 11, 1753.	4.0	1
20	Colonyâ€stimulating factor 1 and its receptor are new potential therapeutic targets for allergic asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 357-369.	5.7	25
21	Renal Clearable Theranostic Nanoplatforms for Gastrointestinal Stromal Tumors. Advanced Materials, 2020, 32, e1905899.	21.0	34
22	Mini-Platform for Off–On Near-Infrared Fluorescence Imaging Using Peptide-Targeting Ligands. Bioconjugate Chemistry, 2020, 31, 721-728.	3.6	9
23	Role of Albumin in Accumulation and Persistence of Tumor-Seeking Cyanine Dyes. Bioconjugate Chemistry, 2020, 31, 248-259.	3.6	67
24	Fluorometric Imaging for Early Diagnosis and Prognosis of Rheumatoid Arthritis. Advanced Science, 2020, 7, 1902267.	11.2	12
25	Sizeâ€Dependent EPR Effect of Polymeric Nanoparticles on Tumor Targeting. Advanced Healthcare Materials, 2020, 9, e1901223.	7.6	264
26	In Vivo Imaging of Click-Crosslinked Hydrogel Depots Following Intratympanic Injection. Materials, 2020, 13, 3070.	2.9	6
27	Rapidly photocurable silk fibroin sealant for clinical applications. NPG Asia Materials, 2020, 12, .	7.9	40
28	Ultrabright and Serum-Stable Squaraine Dyes. Journal of Medicinal Chemistry, 2020, 63, 9436-9445.	6.4	14
29	NIR fluorescence for monitoring in vivo scaffold degradation along with stem cell tracking in bone tissue engineering. Biomaterials, 2020, 258, 120267.	11.4	40
30	3D Printing and NIR Fluorescence Imaging Techniques for the Fabrication of Implants. Materials, 2020, 13, 4819.	2.9	6
31	Enzyme-amplified SERS immunoassay with Ag-Au bimetallic SERS hot spots. Nano Research, 2020, 13, 3338-3346.	10.4	56
32	Small Molecules for Multi-Wavelength Near-Infrared Fluorescent Mapping of Regional and Sentinel Lymph Nodes in Colorectal Cancer Staging. Frontiers in Oncology, 2020, 10, 586112.	2.8	1
33	Combating iron overload: a case for deferoxamine-based nanochelators. Nanomedicine, 2020, 15, 1341-1356.	3.3	21
34	Facile formulation of a long-wavelength cyanine for optical imaging in the second near-infrared window. Biomaterials Science, 2020, 8, 4199-4205.	5.4	16
35	Peroxidaseâ€Like Nanozymes Induce a Novel Form of Cell Death and Inhibit Tumor Growth In Vivo. Advanced Functional Materials, 2020, 30, 2000647.	14.9	49
36	Multispectral image-guided surgery in patients. Nature Biomedical Engineering, 2020, 4, 245-246.	22.5	37

#	Article	IF	Citations
37	Near-infrared fluorescence imaging in immunotherapy. Advanced Drug Delivery Reviews, 2020, 167, 121-134.	13.7	84
38	A Hybrid Speller Design Using Eye Tracking and SSVEP Brain–Computer Interface. Sensors, 2020, 20, 891.	3.8	32
39	Rapid and Selective Targeting of Heterogeneous Pancreatic Neuroendocrine Tumors. IScience, 2020, 23, 101006.	4.1	8
40	High-throughput single-cell live imaging of photobiomodulation with multispectral near-infrared lasers in cultured T cells. Journal of Biomedical Optics, 2020, 25, 1.	2.6	10
41	Prognostic imaging of iatrogenic and traumatic ureteral injury by near-infrared fluorescence. Quantitative Imaging in Medicine and Surgery, 2019, 9, 1056-1065.	2.0	11
42	Chemical Modulation of Bioengineered Exosomes for Tissueâ€Specific Biodistribution. Advanced Therapeutics, 2019, 2, 1900111.	3.2	26
43	Renal clearable nanochelators for iron overload therapy. Nature Communications, 2019, 10, 5134.	12.8	83
44	Targeted molecular imaging of TLR4 in hepatocellular carcinoma using zwitterionic near-infrared fluorophores. Quantitative Imaging in Medicine and Surgery, 2019, 9, 1548-1555.	2.0	18
45	Targeted Near-Infrared Fluorescence Imaging for Regenerative Medicine. Tissue Engineering and Regenerative Medicine, 2019, 16, 433-442.	3.7	10
46	P2X7 PET Radioligand ¹⁸ F-PTTP for Differentiation of Lung Tumor from Inflammation. Journal of Nuclear Medicine, 2019, 60, 930-936.	5.0	22
47	An injectable, click-crosslinked, cytomodulin-modified hyaluronic acid hydrogel for cartilage tissue engineering. NPG Asia Materials, 2019, 11, .	7.9	85
48	Dual-Channel Fluorescence Imaging of Hydrogel Degradation and Tissue Regeneration in the Brain. Theranostics, 2019, 9, 4255-4264.	10.0	29
49	An injectable cationic hydrogel electrostatically interacted with BMP2 to enhance in vivo osteogenic differentiation of human turbinate mesenchymal stem cells. Materials Science and Engineering C, 2019, 103, 109853.	7.3	11
50	Realâ€Time Imaging of Vaccine Biodistribution Using Zwitterionic NIR Nanoparticles. Advanced Healthcare Materials, 2019, 8, 1900035.	7.6	10
51	QuatCy: A Heptamethine Cyanine Modification With Improved Characteristics. Theranostics, 2019, 9, 2856-2867.	10.0	51
52	Lysosomeâ€Targeted Bioprobes for Sequential Cell Tracking from Macroscopic to Microscopic Scales. Advanced Materials, 2019, 31, e1806216.	21.0	24
53	Zwitterionic near-infrared fluorophore-conjugated epidermal growth factor for fast, real-time, and target-cell-specific cancer imaging. Theranostics, 2019, 9, 1085-1095.	10.0	10
54	Fluorescence Lifetime-Based Tumor Contrast Enhancement Using an EGFR Antibody–Labeled Near-Infrared Fluorophore. Clinical Cancer Research, 2019, 25, 6653-6661.	7.0	24

#	Article	IF	Citations
55	Highly-Soluble Cyanine J-aggregates Entrapped by Liposomes for <i>In Vivo</i> Optical Imaging around 930 nm. Theranostics, 2019, 9, 381-390.	10.0	33
56	Light-responsive nanomedicine for biophotonic imaging and targeted therapy. Advanced Drug Delivery Reviews, 2019, 138, 133-147.	13.7	106
57	Real-Time Fluorescence Imaging in Thoracic Surgery. Korean Journal of Thoracic and Cardiovascular Surgery, 2019, 52, 205-220.	0.6	7
58	Multivalent mannose-decorated NIR nanoprobes for targeting pan lymph nodes. Chemical Engineering Journal, 2018, 340, 51-57.	12.7	22
59	Realâ€Time Imaging of Brain Tumor for Imageâ€Guided Surgery. Advanced Healthcare Materials, 2018, 7, e1800066.	7.6	67
60	Fluorescence molecular imaging systems for intraoperative image-guided surgery. Applied Spectroscopy Reviews, 2018, 53, 349-359.	6.7	22
61	Optical spectroscopic imaging for cell therapy and tissue engineering. Applied Spectroscopy Reviews, 2018, 53, 360-375.	6.7	18
62	A novel pilot animal model for the surgical prevention of lymphedema: the power of optical imaging. Journal of Surgical Research, 2018, 221, 285-292.	1.6	10
63	A Comparison of [99mTc]Duramycin and [99mTc]Annexin V in SPECT/CT Imaging Atherosclerotic Plaques. Molecular Imaging and Biology, 2018, 20, 249-259.	2.6	25
64	Theranostic nanosystems for targeted cancer therapy. Nano Today, 2018, 23, 59-72.	11.9	86
65	Intraoperative biophotonic imaging systems for image-guided interventions. Nanophotonics, 2018, 8, 99-116.	6.0	40
66	Development of a smartphone-based rapid dual fluorescent diagnostic system for the simultaneous detection of influenza A and H5 subtype in avian influenza A-infected patients. Theranostics, 2018, 8, 6132-6148.	10.0	29
67	Bioengineered H-Ferritin Nanocages for Quantitative Imaging of Vulnerable Plaques in Atherosclerosis. ACS Nano, 2018, 12, 9300-9308.	14.6	43
68	Cross-linked electrospun cartilage acellular matrix/poly(caprolactone-co-lactide-co-glycolide) nanofiber as an antiadhesive barrier. Acta Biomaterialia, 2018, 74, 192-206.	8.3	18
69	Airway Epithelial Cell-Derived Colony Stimulating Factor-1 Promotes Allergen Sensitization. Immunity, 2018, 49, 275-287.e5.	14.3	57
70	Renally learable Polymeric Nanochelator for Iron Overload Therapy. FASEB Journal, 2018, 32, 571.7.	0.5	0
71	PSMA-targeted contrast agents for intraoperative imaging of prostate cancer,. Chemical Communications, 2017, 53, 1611-1614.	4.1	34
72	Determination of renal function and injury using near-infrared fluorimetry in experimental cardiorenal syndrome. American Journal of Physiology - Renal Physiology, 2017, 312, F629-F639.	2.7	19

#	Article	IF	CITATIONS
73	Intraoperative Near-Infrared Fluorescence Imaging of Thymus in Preclinical Models. Annals of Thoracic Surgery, 2017, 103, 1132-1141.	1.3	4
74	Single Microfluidic Electrochemical Sensor System for Simultaneous Multi-Pulmonary Hypertension Biomarker Analyses. Scientific Reports, 2017, 7, 7545.	3.3	34
75	Bioimaging of botulinum toxin and hyaluronate hydrogels using zwitterionic near-infrared fluorophores. Biomaterials Research, 2017, 21, 15.	6.9	7
76	qF-SSOP: real-time optical property corrected fluorescence imaging. Biomedical Optics Express, 2017, 8, 3597.	2.9	39
77	Antigen-responsive molecular sensor enables real-time tumor-specific imaging. Theranostics, 2017, 7, 952-961.	10.0	14
78	Smartphone-Based Fluorescent Diagnostic System for Highly Pathogenic H5N1 Viruses. Theranostics, 2016, 6, 231-242.	10.0	91
79	Near-Infrared Illumination of Native Tissues for Image-Guided Surgery. Journal of Medicinal Chemistry, 2016, 59, 5311-5323.	6.4	46
80	Siteâ€Specific In Vivo Bioorthogonal Ligation via Chemical Modulation. Advanced Healthcare Materials, 2016, 5, 2510-2516.	7.6	9
81	Tissue-Specific Near-Infrared Fluorescence Imaging. Accounts of Chemical Research, 2016, 49, 1731-1740.	15.6	308
82	Endocrine-specific NIR fluorophores for adrenal gland targeting. Chemical Communications, 2016, 52, 10305-10308.	4.1	24
83	Renal Clearable Organic Nanocarriers for Bioimaging and Drug Delivery. Advanced Materials, 2016, 28, 8162-8168.	21.0	122
84	An efficient strategy to enhance binding affinity and specificity of a known isozyme inhibitor. Organic and Biomolecular Chemistry, 2016, 14, 6833-6839.	2.8	11
85	Synchronized tracking of brain cognitive processing using EEG and vision signals. Applied Spectroscopy Reviews, 2016, 51, 592-602.	6.7	1
86	Bioengineered Magnetoferritin Nanoprobes for Single-Dose Nuclear-Magnetic Resonance Tumor Imaging. ACS Nano, 2016, 10, 4184-4191.	14.6	81
87	700-nm Zwitterionic Near-Infrared Fluorophores for Dual-Channel Image-Guided Surgery. Molecular Imaging and Biology, 2016, 18, 52-61.	2.6	65
88	Cartilageâ€Specific Nearâ€Infrared Fluorophores for Biomedical Imaging. Angewandte Chemie - International Edition, 2015, 54, 8648-8652.	13.8	97
89	Pancreas-Targeted NIR Fluorophores for Dual-Channel Image-Guided Abdominal Surgery. Theranostics, 2015, 5, 1-11.	10.0	38
90	Charge and Hydrophobicity Effects of NIR Fluorophores on Bone-Specific Imaging. Theranostics, 2015, 5, 609-617.	10.0	45

#	Article	IF	CITATIONS
91	High-Throughput Sorting and Placement of One-Bead–One-Compound (OBOC) Libraries from Bulk to Single Wells in Organic Solvent. ACS Combinatorial Science, 2015, 17, 303-309.	3.8	3
92	Screening of Small Molecule Microarrays for Ligands Targeted to the Extracellular Epitopes of Living Cells. Microarrays (Basel, Switzerland), 2015, 4, 53-63.	1.4	3
93	NIR fluorescent small molecules for intraoperative imaging. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2015, 7, 828-838.	6.1	70
94	Structure-inherent targeting of near-infrared fluorophores for parathyroid and thyroid gland imaging. Nature Medicine, 2015, 21, 192-197.	30.7	166
95	Tailored Near-Infrared Contrast Agents for Image Guided Surgery. Journal of Medicinal Chemistry, 2015, 58, 2845-2854.	6.4	63
96	Sentinel Lymph Node Mapping of Liver. Annals of Surgical Oncology, 2015, 22, 1147-1155.	1.5	21
97	Correlating Molecular Character of NIR Imaging Agents with Tissue-Specific Uptake. Journal of Medicinal Chemistry, 2015, 58, 4348-4356.	6.4	49
98	Pharmacokinetics, pharmacodynamics and toxicology of theranostic nanoparticles. Nanoscale, 2015, 7, 18848-18862.	5.6	115
99	Bioimaging of Hyaluronate–Interferon α Conjugates Using a Non-Interfering Zwitterionic Fluorophore. Biomacromolecules, 2015, 16, 3054-3061.	5.4	20
100	Exponential growth of publications on carbon nanodots by Chinese authors. Journal of Thoracic Disease, 2015, 7, E201-5.	1.4	10
101	Prototype Nerve-Specific Near-Infrared Fluorophores. Theranostics, 2014, 4, 823-833.	10.0	81
102	Simultaneous Mapping of Pan and Sentinel Lymph Nodes for Real-Time Image-Guided Surgery. Theranostics, 2014, 4, 693-700.	10.0	34
103	Rapid and Quantitative Detection of Zoonotic Influenza A Virus Infection Utilizing Coumarin-derived dendrimer-based Fluorescent Immunochromatographic Strip Test (FICT). Theranostics, 2014, 4, 1239-1249.	10.0	26
104	Investigating fluorescent dyes in fluorescence-assisted screenings. Chemical Communications, 2014, 50, 15220-15223.	4.1	6
105	Central C–C bonding increases optical and chemical stability of NIR fluorophores. RSC Advances, 2014, 4, 58762-58768.	3.6	55
106	Microscopic Validation of Macroscopic In Vivo Images Enabled by Same-Slide Optical and Nuclear Fusion. Journal of Nuclear Medicine, 2014, 55, 1899-1904.	5.0	4
107	Building blocks for tumour delivery. Nature Nanotechnology, 2014, 9, 93-94.	31.5	27
108	Self-assembled micellar nanocomplexes comprising green tea catechin derivatives and protein drugs for cancer therapy. Nature Nanotechnology, 2014, 9, 907-912.	31.5	333

#	Article	IF	CITATIONS
109	Phosphonated Nearâ€Infrared Fluorophores for Biomedical Imaging of Bone. Angewandte Chemie - International Edition, 2014, 53, 10668-10672.	13.8	106
110	NIR Fluorescence Imaging Systems with Optical Packaging Technology. Journal of the Microelectronics and Packaging Society, 2014, 21, 25-31.	0.1	7
111	Highly charged cyanine fluorophores for trafficking scaffold degradation. Biomedical Materials (Bristol), 2013, 8, 014109.	3.3	24
112	Targeted zwitterionic near-infrared fluorophores for improved optical imaging. Nature Biotechnology, 2013, 31, 148-153.	17.5	459
113	Near-infrared lipophilic fluorophores for tracing tissue growth. Biomedical Materials (Bristol), 2013, 8, 014110.	3.3	38
114	Near-Infrared Fluorescence Imaging for Noninvasive Trafficking of Scaffold Degradation. Scientific Reports, 2013, 3, 1198.	3.3	65
115	Simultaneous Assessment of Luminal Integrity and Vascular Perfusion of the Gastrointestinal Tract Using Dual-Channel Near-Infrared Fluorescence. Molecular Imaging, 2012, 11, 7290.2011.00048.	1.4	25
116	Real-Time Simultaneous Near-Infrared Fluorescence Imaging of Bile Duct and Arterial Anatomy. Journal of Surgical Research, 2012, 176, 7-13.	1.6	77
117	Two-wavelength near-infrared fluorescence for the quantitation of drug antiplatelet effects in large animal model systems. Journal of Vascular Surgery, 2012, 56, 171-180.	1.1	19
118	cGMPâ€Compatible preparative scale synthesis of nearâ€infrared fluorophores. Contrast Media and Molecular Imaging, 2012, 7, 516-524.	0.8	55
119	Long-term multimodal imaging of tumor draining sentinel lymph nodes using mesoporous silica-based nanoprobes. Biomaterials, 2012, 33, 4370-4378.	11.4	129
120	Design considerations for targeted optical contrast agents. Quantitative Imaging in Medicine and Surgery, 2012, 2, 266-73.	2.0	63
121	Simultaneous assessment of luminal integrity and vascular perfusion of the gastrointestinal tract using dual-channel near-infrared fluorescence. Molecular Imaging, 2012, 11, 301-8.	1.4	10
122	Clinical Translation of Ex Vivo Sentinel Lymph Node Mapping for Colorectal Cancer Using Invisible Near-Infrared Fluorescence Light. Annals of Surgical Oncology, 2011, 18, 1006-1014.	1.5	69
123	Toward Optimization of Imaging System and Lymphatic Tracer for Near-Infrared Fluorescent Sentinel Lymph Node Mapping in Breast Cancer. Annals of Surgical Oncology, 2011, 18, 2483-2491.	1.5	225
124	Synthesis and Inâ€Vivo Fate of Zwitterionic Nearâ€Infrared Fluorophores. Angewandte Chemie - International Edition, 2011, 50, 6258-6263.	13.8	308
125	Image-Guided Surgery Using Invisible Near-Infrared Light: Fundamentals of Clinical Translation. Molecular Imaging, 2010, 9, 7290.2010.00034.	1.4	444
126	Nanoparticles for Biomedical Imaging: Fundamentals of Clinical Translation. Molecular Imaging, 2010, 9, 7290.2010.00031.	1.4	213

#	Article	IF	Citations
127	Intraoperative Localization of Insulinoma and Normal Pancreas Using Invisible Near-Infrared Fluorescent Light. Annals of Surgical Oncology, 2010, 17, 1094-1100.	1.5	73
128	Real-time, near-infrared, fluorescence-guided identification of the ureters using methylene blue. Surgery, 2010, 148, 78-86.	1.9	116
129	Real-time intra-operative near-infrared fluorescence identification of the extrahepatic bile ducts using clinically available contrast agents. Surgery, 2010, 148, 87-95.	1.9	109
130	Rapid translocation of nanoparticles from the lung airspaces to the body. Nature Biotechnology, 2010, 28, 1300-1303.	17.5	546
131	Design considerations for tumour-targeted nanoparticles. Nature Nanotechnology, 2010, 5, 42-47.	31.5	692
132	Low-frequency wide-field fluorescence lifetime imaging using a high-power near-infrared light-emitting diode light source. Journal of Biomedical Optics, 2010, 15, 026005.	2.6	21
133	Nanoparticles for biomedical imaging: fundamentals of clinical translation. Molecular Imaging, 2010, 9, 291-310.	1.4	177
134	Image-guided surgery using invisible near-infrared light: fundamentals of clinical translation. Molecular Imaging, 2010, 9, 237-55.	1.4	237
135	Tissue- and Organ-Selective Biodistribution of NIR Fluorescent Quantum Dots. Nano Letters, 2009, 9, 2354-2359.	9.1	281
136	A low-cost linear DC - 35 MHz high-power LED driver for continuous wave (CW) and fluorescence lifetime imaging (FLIM)., 2008, 6848, 684807.		6
137	Renal clearance of quantum dots. Nature Biotechnology, 2007, 25, 1165-1170.	17.5	3,789
138	Compact Cysteine-Coated CdSe(ZnCdS) Quantum Dots for in Vivo Applications. Journal of the American Chemical Society, 2007, 129, 14530-14531.	13.7	382
139	1H NMR titration study of stimuli-responsive supramolecular assemblies: inclusion complexes between PEG–b-PEI copolymer-grafted dextran and naphthalene-appended γ-cyclodextrin via double-strand inclusion. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2007, 57, 323-328.	1.6	6
140	Image-Guided Oncologic Surgery Using Invisible Light: Completed Pre-Clinical Development for Sentinel Lymph Node Mapping. Annals of Surgical Oncology, 2006, 13, 1671-1681.	1.5	249
141	Molecular-Recognition and Binding Properties of Cyclodextrin-Conjugated Polyrotaxanes. ChemPhysChem, 2006, 7, 1668-1670.	2.1	5
142	pH-Sensitive Locomotion of Cyclodextrins in a Block–Selective Mobile Polyrotaxane. ChemPhysChem, 2006, 7, 1671-1673.	2.1	19
143	One-Pot Synthesis of a Polyrotaxane via Selective Threading of a PEI-b-PEG-b-PEI Copolymer. Macromolecular Bioscience, 2006, 6, 420-424.	4.1	37
144	Synthesis of Poly(É>-lysine)-Grafted Dextrans and Their pH- and Thermosensitive Hydrogelation with Cyclodextrins. ChemPhysChem, 2005, 6, 1081-1086.	2.1	52

#	ARTICLE	IF	CITATION
145	Sunflower-Shaped Cyclodextrin-Conjugated Poly($\hat{l}\mu$ -Lysine) Polyplex as a Controlled Intracellular Trafficking Device. ChemBioChem, 2005, 6, 1986-1990.	2.6	23
146	Block-Selective Movement of α-Cyclodextrins in Polyrotaxanes of PEI-b-PEG-b-PEI Copolymer. Macromolecules, 2005, 38, 9878-9881.	4.8	39
147	Structural Role of Guest Molecules in Rapid and Sensitive Supramolecular Assembling System Based on \hat{l}^2 -Cyclodextrin-Conjugated Poly($\hat{l}\mu$ -lysine). Macromolecules, 2004, 37, 10036-10041.	4.8	12
148	pH- and Thermosensitive Supramolecular Assembling System: Rapidly Responsive Properties of β-Cyclodextrin-Conjugated Poly(ε-lysine). Journal of the American Chemical Society, 2003, 125, 6350-6351.	13.7	102
149	Control of Rapid Phase Transition Induced by Supramolecular Complexation of β-Cyclodextrin-Conjugated Poly(ε-lysine) with a Specific Guest. Macromolecules, 2003, 36, 5342-5347.	4.8	57
150	Rapid induction of thermoreversible hydrogel formation based on poly(propylene glycol)-grafted dextran inclusion complexes. Macromolecular Bioscience, 2002, 2, 298-303.	4.1	65
151	Molecular Recognition System Controlled by Thermosensitive Complexation Using Cyclodextrin-Conjugated Poly(ε-lysine)s., 0,,.		O