Victor I Tsetlin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6214499/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crystal structure of nicotinic acetylcholine receptor homolog AChBP in complex with an α-conotoxin PnIA variant. Nature Structural and Molecular Biology, 2005, 12, 582-588.	8.2	311
2	Snake venom alpha-neurotoxins and other 'three-finger' proteins. FEBS Journal, 1999, 264, 281-286.	0.2	256
3	Structural determinants of selective Â-conotoxin binding to a nicotinic acetylcholine receptor homolog AChBP. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3615-3620.	7.1	187
4	Mitochondria Express α7 Nicotinic Acetylcholine Receptors to Regulate Ca2+ Accumulation and Cytochrome c Release: Study on Isolated Mitochondria. PLoS ONE, 2012, 7, e31361.	2.5	130
5	"Weak Toxin―from Naja kaouthia Is a Nontoxic Antagonist of α7 and Muscle-type Nicotinic Acetylcholine Receptors. Journal of Biological Chemistry, 2001, 276, 15810-15815.	3.4	108
6	Three-finger snake neurotoxins and Ly6 proteins targeting nicotinic acetylcholine receptors: pharmacological tools and endogenous modulators. Trends in Pharmacological Sciences, 2015, 36, 109-123.	8.7	96
7	Cloning, synthesis, and characterization of αO-conotoxin GeXIVA, a potent α9α10 nicotinic acetylcholine receptor antagonist. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4026-35.	7.1	91
8	NMR Structure and Action on Nicotinic Acetylcholine Receptors of Water-soluble Domain of Human LYNX1. Journal of Biological Chemistry, 2011, 286, 10618-10627.	3.4	87
9	Polypeptide and peptide toxins, magnifying lenses for binding sites in nicotinic acetylcholine receptors. Biochemical Pharmacology, 2009, 78, 720-731.	4.4	75
10	Naturally Occurring Disulfide-bound Dimers of Three-fingered Toxins. Journal of Biological Chemistry, 2008, 283, 14571-14580.	3.4	73
11	Functional Nicotinic Acetylcholine Receptors Are Expressed in B Lymphocyte-Derived Cell Lines. Molecular Pharmacology, 2003, 64, 885-889.	2.3	72
12	Nicotinic acetylcholine receptor inhibitors derived from snake and snail venoms. Neuropharmacology, 2017, 127, 196-223.	4.1	70
13	Human Secreted Ly-6/uPAR Related Protein-1 (SLURP-1) Is a Selective Allosteric Antagonist of α7 Nicotinic Acetylcholine Receptor. PLoS ONE, 2016, 11, e0149733.	2.5	65
14	NMR spatial structure of α-conotoxin ImI reveals a common scaffold in snail and snake toxins recognizing neuronal nicotinic acetylcholine receptors1. FEBS Letters, 1999, 444, 275-280.	2.8	63
15	Azemiopsin from Azemiops feae Viper Venom, a Novel Polypeptide Ligand of Nicotinic Acetylcholine Receptor. Journal of Biological Chemistry, 2012, 287, 27079-27086.	3.4	61
16	Quantitative proteomic analysis of Vietnamese krait venoms: Neurotoxins are the major components in Bungarus multicinctus and phospholipases A2 in Bungarus fasciatus. Toxicon, 2015, 107, 197-209.	1.6	55
17	Assembly of nicotinic and other Cysâ€loop receptors. Journal of Neurochemistry, 2011, 116, 734-741.	3.9	53
18	Water-soluble LYNX1 Residues Important for Interaction with Muscle-type and/or Neuronal Nicotinic Receptors. Journal of Biological Chemistry, 2013, 288, 15888-15899.	3.4	48

#	Article	IF	CITATIONS
19	Spatial Structure and Activity of Synthetic Fragments of Lynx1 and of Nicotinic Receptor Loop C Models. Biomolecules, 2021, 11, 1.	4.0	48
20	Naturally Occurring and Synthetic Peptides Acting on Nicotinic Acetylcholine Receptors. Current Pharmaceutical Design, 2009, 15, 2430-2452.	1.9	46
21	Neurotoxins from Snake Venoms and α-Conotoxin ImI Inhibit Functionally Active Ionotropic γ-Aminobutyric Acid (GABA) Receptors. Journal of Biological Chemistry, 2015, 290, 22747-22758.	3.4	45
22	A new type of thrombin inhibitor, noncytotoxic phospholipase A2, from the Naja haje cobra venom. Toxicon, 2010, 55, 186-194.	1.6	44
23	Two distinct structures of alpha-conotoxin GI in aqueous solution. FEBS Journal, 1998, 254, 238-247.	0.2	42
24	From crystal structure of α-conotoxin GIC in complex with Ac-AChBP to molecular determinants of its high selectivity for α3β2 nAChR. Scientific Reports, 2016, 6, 22349.	3.3	41
25	Spatial structure of the M3 transmembrane segment of the nicotinic acetylcholine receptor alpha subunit. FEBS Journal, 1998, 255, 455-461.	0.2	40
26	Muscarinic toxin-like proteins from cobra venom. FEBS Journal, 2000, 267, 6784-6789.	0.2	40
27	Crystal Structure of the Monomeric Extracellular Domain of α9 Nicotinic Receptor Subunit in Complex With α-Conotoxin RgIA: Molecular Dynamics Insights Into RgIA Binding to α9α10 Nicotinic Receptors. Frontiers in Pharmacology, 2019, 10, 474.	3.5	40
28	Nicotinic acetylcholine receptors at atomic resolution. Current Opinion in Pharmacology, 2009, 9, 306-310.	3.5	39
29	Two-dimensional 1H-NMR study of the spatial structure of neurotoxin II from Naja naja oxiana. FEBS Journal, 1993, 213, 1213-1223.	0.2	37
30	Weak toxin WTX from <i>Naja kaouthia</i> cobra venom interacts with both nicotinic and muscarinic acetylcholine receptors. FEBS Journal, 2009, 276, 5065-5075.	4.7	37
31	Structural Insight into Specificity of Interactions between Nonconventional Three-finger Weak Toxin from Naja kaouthia (WTX) and Muscarinic Acetylcholine Receptors. Journal of Biological Chemistry, 2015, 290, 23616-23630.	3.4	37
32	Inhibition of Nicotinic Acetylcholine Receptors, a Novel Facet in the Pleiotropic Activities of Snake Venom Phospholipases A2. PLoS ONE, 2014, 9, e115428.	2.5	36
33	?-Conotoxin analogs with additional positive charge show increased selectivity towards Torpedo�californica and some neuronal subtypes of nicotinic acetylcholine receptors. FEBS Journal, 2006, 273, 4470-4481.	4.7	35
34	Physicochemical and immunological studies of the N-terminal domain Ã ⁻ Â;½of theTorpedoacetylcholine receptor α-subunit expressed in Ã ⁻ Â;½Escherichia coli. FEBS Journal, 1999, 259, 310-319.	0.2	33
35	Dimeric α-Cobratoxin X-ray Structure. Journal of Biological Chemistry, 2012, 287, 6725-6734.	3.4	33
36	Expression of the Ly-6 family proteins Lynx1 and Ly6H in the rat brain is compartmentalized, cell-type specific, and developmentally regulated. Brain Structure and Function, 2014, 219, 1923-1934.	2.3	33

#	Article	IF	CITATIONS
37	Natural Compounds Interacting with Nicotinic Acetylcholine Receptors: From Low-Molecular Weight Ones to Peptides and Proteins. Toxins, 2015, 7, 1683-1701.	3.4	32
38	Azemiopsin, a Selective Peptide Antagonist of Muscle Nicotinic Acetylcholine Receptor: Preclinical Evaluation as a Local Muscle Relaxant. Toxins, 2018, 10, 34.	3.4	28
39	Snake venom phospholipase A2s exhibit strong virucidal activity against SARS-CoV-2 and inhibit the viral spike glycoprotein interaction with ACE2. Cellular and Molecular Life Sciences, 2021, 78, 7777-7794.	5.4	28
40	Vietnamese Heterometrus laoticus scorpion venom: Evidence for analgesic and anti-inflammatory activity and isolation of new polypeptide toxin acting on Kv1.3 potassium channel. Toxicon, 2014, 77, 40-48.	1.6	27
41	Design of New α-Conotoxins: From Computer Modeling to Synthesis of Potent Cholinergic Compounds. Marine Drugs, 2011, 9, 1698-1714.	4.6	26
42	Nicotinic receptor involvement in regulation of functions of mouse neutrophils from inflammatory site. Immunobiology, 2016, 221, 761-772.	1.9	26
43	lsomerization of Asp7 in Beta-Amyloid Enhances Inhibition of the α7 Nicotinic Receptor and Promotes Neurotoxicity. Cells, 2019, 8, 771.	4.1	26
44	Activation of α7 Nicotinic Acetylcholine Receptor Upregulates HLA-DR and Macrophage Receptors: Potential Role in Adaptive Immunity and in Preventing Immunosuppression. Biomolecules, 2020, 10, 507.	4.0	26
45	6-Bromohypaphorine from Marine Nudibranch Mollusk Hermissenda crassicornis is an Agonist of Human α7 Nicotinic Acetylcholine Receptor. Marine Drugs, 2015, 13, 1255-1266.	4.6	25
46	Presence of α7 nicotinic acetylcholine receptors on dorsal root ganglion neurons proved using knockout mice and selective αâ€neurotoxins in histochemistry. Journal of Neurochemistry, 2009, 109, 1087-1095.	3.9	24
47	Marine Natural Products Acting on the Acetylcholine-Binding Protein and Nicotinic Receptors: From Computer Modeling to Binding Studies and Electrophysiology. Marine Drugs, 2014, 12, 1859-1875.	4.6	24
48	Novel long-chain neurotoxins from <i>Bungarus candidus</i> distinguish the two binding sites in muscle-type nicotinic acetylcholine receptors. Biochemical Journal, 2019, 476, 1285-1302.	3.7	24
49	Refolding of the Escherichia coli expressed extracellular domain of α7 nicotinic acetylcholine receptor. FEBS Journal, 2002, 269, 2801-2809.	0.2	23
50	The first representative of glycosylated three-fingered toxins. Cytotoxin from the Naja kaouthia cobra venom. FEBS Journal, 2004, 271, 2018-2027.	0.2	23
51	High-Affinity α-Conotoxin PnIA Analogs Designed on the Basis of the Protein Surface Topography Method. Scientific Reports, 2016, 6, 36848.	3.3	23
52	Pancreatic and snake venom presynaptically active phospholipases A2 inhibit nicotinic acetylcholine receptors. PLoS ONE, 2017, 12, e0186206.	2.5	22
53	Threeâ€finger proteins from snakes and humans acting on nicotinic receptors: Old and new. Journal of Neurochemistry, 2021, 158, 1223-1235.	3.9	22
54	Interaction of Synthetic Human SLURP-1 with the Nicotinic Acetylcholine Receptors. Scientific Reports, 2017, 7, 16606.	3.3	20

#	Article	IF	CITATIONS
55	From Synthetic Fragments of Endogenous Three-Finger Proteins to Potential Drugs. Frontiers in Pharmacology, 2019, 10, 748.	3.5	20
56	Arachidonoylcholine and Other Unsaturated Long-Chain Acylcholines Are Endogenous Modulators of the Acetylcholine Signaling System. Biomolecules, 2020, 10, 283.	4.0	19
57	How do acetylcholine receptor ligands reach their binding sites?. FEBS Journal, 1999, 265, 902-910.	0.2	18
58	Central loop of non-conventional toxin WTX from Naja kaouthia is important for interaction with nicotinic acetylcholine receptors. Toxicon, 2016, 119, 274-279.	1.6	18
59	High Selectivity of an α-Conotoxin LvIA Analogue for α3β2 Nicotinic Acetylcholine Receptors Is Mediated by β2 Functionally Important Residues. Journal of Medicinal Chemistry, 2020, 63, 13656-13668.	6.4	18
60	Labeling of Torpedo californica nicotinic acetylcholine receptor subunits by cobratoxin derivatives with photoactivatable groups of different chemical nature at Lys23. FEBS Journal, 1998, 253, 229-235.	0.2	17
61	Orthosteric and/or Allosteric Binding of α-Conotoxins to Nicotinic Acetylcholine Receptors and Their Models. Marine Drugs, 2018, 16, 460.	4.6	17
62	Photoactivatable α-conotoxins reveal contacts with all subunits as well as antagonist-induced rearrangements in theTorpedo californicaacetylcholine receptor. FEBS Journal, 2001, 268, 3664-3673.	0.2	16
63	Phospholipase A ₂ from krait <i>Bungarus fasciatus</i> venom induces human cancer cell death in vitro. PeerJ, 2019, 7, e8055.	2.0	16
64	Peptides from puff adder Bitis arietans venom, novel inhibitors of nicotinic acetylcholine receptors. Toxicon, 2016, 121, 70-76.	1.6	15
65	Species specificity of rat and human α7 nicotinic acetylcholine receptors towards different classes of peptide and protein antagonists. Neuropharmacology, 2018, 139, 226-237.	4.1	15
66	Novel Bradykinin-Potentiating Peptides and Three-Finger Toxins from Viper Venom: Combined NGS Venom Gland Transcriptomics and Quantitative Venom Proteomics of the Azemiops feae Viper. Biomedicines, 2020, 8, 249.	3.2	15
67	Functional expression and axonal transport of α7 nAChRs by peptidergic nociceptors of rat dorsal root ganglion. Brain Structure and Function, 2015, 220, 1885-1899.	2.3	14
68	Anticoagulant Activity of Low-Molecular Weight Compounds from Heterometrus laoticus Scorpion Venom. Toxins, 2017, 9, 343.	3.4	14
69	Scorpion toxins interact with nicotinic acetylcholine receptors. FEBS Letters, 2019, 593, 2779-2789.	2.8	14
70	Oligoarginine Peptides, a New Family of Nicotinic Acetylcholine Receptor Inhibitors. Molecular Pharmacology, 2019, 96, 664-673.	2.3	14
71	Curare alkaloids from Matis Dart Poison: Comparison with d-tubocurarine in interactions with nicotinic, 5-HT3 serotonin and GABAA receptors. PLoS ONE, 2019, 14, e0210182.	2.5	14
72	Calcium imaging with genetically encoded sensor Case12: Facile analysis of α7/α9 nAChR mutants. PLoS ONE, 2017, 12, e0181936.	2.5	13

#	Article	IF	CITATIONS
73	Effects of Cardiotoxins from Naja oxiana Cobra Venom on Rat Heart Muscle and Aorta: A Comparative Study of Toxin-Induced Contraction Mechanisms. Toxins, 2022, 14, 88.	3.4	13
74	Structural Biology of Key Nervous System Proteins. Journal of Neurochemistry, 1996, 66, 1781-1792.	3.9	12
75	Curare Alkaloids: Constituents of a Matis Dart Poison. Journal of Natural Products, 2015, 78, 2537-2544.	3.0	11
76	Complex approach for analysis of snake venom α-neurotoxins binding to HAP, the high-affinity peptide. Scientific Reports, 2020, 10, 3861.	3.3	11
77	α-Conotoxins and α-Cobratoxin Promote, while Lipoxygenase and Cyclooxygenase Inhibitors Suppress the Proliferation of Glioma C6 Cells. Marine Drugs, 2021, 19, 118.	4.6	11
78	Acetylcholine and Acetylcholine Receptors: Textbook Knowledge and New Data. Biomolecules, 2020, 10, 852.	4.0	10
79	Antiviral Effects of Animal Toxins: Is There a Way to Drugs?. International Journal of Molecular Sciences, 2022, 23, 3634.	4.1	10
80	A comparative study on selectivity of alpha-conotoxins GI and ImI using their synthetic analogues and derivatives. Neurochemical Research, 2003, 28, 599-606.	3.3	9
81	Tetrapeptide Ac-HAEE-NH2 Protects α4β2 nAChR from Inhibition by Aβ. International Journal of Molecular Sciences, 2020, 21, 6272.	4.1	9
82	α9α10 nicotinic acetylcholine receptors regulate murine bone marrow granulocyte functions. Immunobiology, 2021, 226, 152047.	1.9	9
83	Makaluvamine G from the Marine Sponge Zyzzia fuliginosa Inhibits Muscle nAChR by Binding at the Orthosteric and Allosteric Sites. Marine Drugs, 2018, 16, 109.	4.6	8
84	α-Conotoxins Enhance both the In Vivo Suppression of Ehrlich carcinoma Growth and In Vitro Reduction in Cell Viability Elicited by Cyclooxygenase and Lipoxygenase Inhibitors. Marine Drugs, 2020, 18, 193.	4.6	8
85	Anti-HIV Activity of Snake Venom Phospholipase A2s: Updates for New Enzymes and Different Virus Strains. International Journal of Molecular Sciences, 2022, 23, 1610.	4.1	8
86	Screening Snake Venoms for Toxicity to Tetrahymena Pyriformis Revealed Anti-Protozoan Activity of Cobra Cytotoxins. Toxins, 2020, 12, 325.	3.4	7
87	Novel Three-Finger Neurotoxins from Naja melanoleuca Cobra Venom Interact with GABAA and Nicotinic Acetylcholine Receptors. Toxins, 2021, 13, 164.	3.4	7
88	Marine Origin Ligands of Nicotinic Receptors: Low Molecular Compounds, Peptides and Proteins for Fundamental Research and Practical Applications. Biomolecules, 2022, 12, 189.	4.0	7
89	Toxins' classification through Raman spectroscopy with principal component analysis. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 278, 121276.	3.9	7
90	New Rigid Nicotine Analogues, Carrying a Norbornane Moiety, Are Potent Agonists of α7 and α3* Nicotinic Receptors. Journal of Medicinal Chemistry, 2019, 62, 1887-1901.	6.4	6

#	Article	IF	CITATIONS
91	Substance P derivatives with photoactivatable labels in the Nâ€ŧerminal part of the molecule. Chemical Biology and Drug Design, 1997, 50, 408-414.	1.1	5
92	Development of a recombinant immunotoxin for the immunotherapy of autoreactive lymphocytes expressing MOG-specific BCRs. Biotechnology Letters, 2016, 38, 1173-1180.	2.2	5
93	Does Cholinergic Stimulation Affect the P2X7 Receptor-Mediated Dye Uptake in Mast Cells and Macrophages?. Frontiers in Cellular Neuroscience, 2020, 14, 548376.	3.7	5
94	New quinoline derivatives as nicotinic receptor modulators. European Journal of Medicinal Chemistry, 2016, 110, 246-258.	5.5	4
95	Interaction of α9α10 Nicotinic Receptors With Peptides and Proteins From Animal Venoms. Frontiers in Cellular Neuroscience, 2021, 15, 765541.	3.7	4
96	Editorial: From Peptide and Protein Toxins to Ion Channel Structure/Function and Drug Design. Frontiers in Pharmacology, 2020, 11, 548366.	3.5	3
97	α-Conotoxin Analogs With Enhanced Affinity for Nicotinic Receptors and Acetylcholine-Binding Proteins. Journal of Molecular Neuroscience, 2006, 30, 77-78.	2.3	2
98	PNUâ€120596, a positive allosteric modulator of mammalian α7 nicotinic acetylcholine receptor, is a negative modulator of ligandâ€gated chlorideâ€selective channels of the gastropod Lymnaea stagnalis. Journal of Neurochemistry, 2020, 155, 274-284.	3.9	2
99	Point Mutations of Nicotinic Receptor α1 Subunit Reveal New Molecular Features of G153S Slow-Channel Myasthenia. Molecules, 2021, 26, 1278.	3.8	2
100	S- and P-type cobra venom cardiotoxins differ in their action on isolated rat heart. Journal of Venomous Animals and Toxins Including Tropical Diseases, 2022, 28, e20210110.	1.4	2
101	Identification of α4β2 nAChR interaction site with Aβ ₄₂ and development of tetrapeptide capable of breaking this interaction. Alzheimer's and Dementia, 2020, 16, e040936.	0.8	1
102	Snake Toxins Labeled by Green Fluorescent Protein or Its Synthetic Chromophore are New Probes for Nicotinic acetylcholine Receptors. Frontiers in Molecular Biosciences, 2021, 8, 753283.	3.5	1