
Arjun Krishnan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6214394/publications.pdf Version: 2024-02-01

Δαιιίνι Καιςηνιλνι

#	Article	IF	CITATIONS
1	Robust normalization and transformation techniques for constructing gene coexpression networks from RNA-seq data. Genome Biology, 2022, 23, 1.	8.8	69
2	GenePlexus: a web-server for gene discovery using network-based machine learning. Nucleic Acids Research, 2022, 50, W358-W366.	14.5	3
3	PecanPy: a fast, efficient and parallelized Python implementation of <i>node2vec</i> . Bioinformatics, 2021, 37, 3377-3379.	4.1	28
4	Functional assessment of the "two-hit―model for neurodevelopmental defects in Drosophila and X. laevis. PLoS Genetics, 2021, 17, e1009112.	3.5	12
5	Reconciling multiple connectivity scores for drug repurposing. Briefings in Bioinformatics, 2021, 22, .	6.5	15
6	Combinatorial patterns of gene expression changes contribute to variable expressivity of the developmental delay-associated 16p12.1 deletion. Genome Medicine, 2021, 13, 163.	8.2	5
7	A flexible, interpretable, and accurate approach for imputing the expression of unmeasured genes. Nucleic Acids Research, 2020, 48, e125-e125.	14.5	9
8	Supervised learning is an accurate method for network-based gene classification. Bioinformatics, 2020, 36, 3457-3465.	4.1	28
9	A Computational Framework for Genome-wide Characterization of the Human Disease Landscape. Cell Systems, 2019, 8, 152-162.e6.	6.2	19
10	Rare variants in the genetic background modulate cognitive and developmental phenotypes in individuals carrying disease-associated variants. Genetics in Medicine, 2019, 21, 816-825.	2.4	127
11	A loop-counting method for covariate-corrected low-rank biclustering of gene-expression and genome-wide association study data. PLoS Computational Biology, 2018, 14, e1006105.	3.2	3
12	GIANT 2.0: genome-scale integrated analysis of gene networks in tissues. Nucleic Acids Research, 2018, 46, W65-W70.	14.5	59
13	Pervasive genetic interactions modulate neurodevelopmental defects of the autism-associated 16p11.2 deletion in Drosophila melanogaster. Nature Communications, 2018, 9, 2548.	12.8	56
14	RECoN: Rice Environment Coexpression Network for Systems Level Analysis of Abiotic-Stress Response. Frontiers in Plant Science, 2017, 8, 1640.	3.6	39
15	Integrative Networks Illuminate Biological Factors Underlying Gene–Disease Associations. Current Genetic Medicine Reports, 2016, 4, 155-162.	1.9	7
16	Genome-wide prediction and functional characterization of the genetic basis of autism spectrum disorder. Nature Neuroscience, 2016, 19, 1454-1462.	14.8	359
17	FNTM: a server for predicting functional networks of tissues in mouse. Nucleic Acids Research, 2015, 43, W182-W187.	14.5	25
18	Targeted exploration and analysis of large cross-platform human transcriptomic compendia. Nature Methods, 2015, 12, 211-214.	19.0	137

Arjun Krishnan

#	Article	IF	CITATIONS
19	Understanding multicellular function and disease with human tissue-specific networks. Nature Genetics, 2015, 47, 569-576.	21.4	738
20	Tissue-aware data integration approach for the inference of pathway interactions in metazoan organisms. Bioinformatics, 2015, 31, 1093-1101.	4.1	99
21	Lowâ€variance RNAs identify Parkinson's disease molecular signature in blood. Movement Disorders, 2015, 30, 813-821.	3.9	18
22	Rice GROWTH UNDER DROUGHT KINASE Is Required for Drought Tolerance and Grain Yield under Normal and Drought Stress Conditions. Plant Physiology, 2014, 166, 1634-1645.	4.8	87
23	Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress. Nature Communications, 2014, 5, 5302.	12.8	254
24	Reconciling differential gene expression data with molecular interaction networks. Bioinformatics, 2013, 29, 622-629.	4.1	17
25	Ontology-aware classification of tissue and cell-type signals in gene expression profiles across platforms and technologies. Bioinformatics, 2013, 29, 3036-3044.	4.1	27
26	Stochastic modeling of dwell-time distributions during transcriptional pausing and initiation. , 2013, ,		1
27	Effects of Drought on Gene Expression in Maize Reproductive and Leaf Meristem Tissue Revealed by RNA-Seq Â. Plant Physiology, 2012, 160, 846-867.	4.8	286
28	Coordinated Activation of Cellulose and Repression of Lignin Biosynthesis Pathways in Rice Â. Plant Physiology, 2011, 155, 916-931.	4.8	198
29	Microarray Data Analysis. Methods in Molecular Biology, 2011, 678, 27-43.	0.9	8
30	Molecular and Physiological Analysis of Drought Stress in Arabidopsis Reveals Early Responses Leading to Acclimation in Plant Growth. Plant Physiology, 2010, 154, 1254-1271.	4.8	580
31	Mutant Resources in Rice for Functional Genomics of the Grasses. Plant Physiology, 2009, 149, 165-170.	4.8	167
32	Integrative approaches for mining transcriptional regulatory programs in Arabidopsis. Briefings in Functional Genomics & Proteomics, 2008, 7, 264-274.	3.8	16
33	Improvement of water use efficiency in rice by expression of <i>HARDY</i> , an <i>Arabidopsis</i> drought and salt tolerance gene. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15270-15275.	7.1	430
34	Identification of genes directly regulated by a transcription factor in rice. Protocol Exchange, 0, , .	0.3	1