Cy Fujimoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6213816/publications.pdf Version: 2024-02-01

Ον Εμιμμοτο

#	Article	IF	CITATIONS
1	Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers. Nature Energy, 2020, 5, 378-385.	39.5	372
2	Backbone stability of quaternized polyaromatics for alkaline membrane fuel cells. Journal of Membrane Science, 2012, 423-424, 438-449.	8.2	254
3	Durability of anion exchange membrane water electrolyzers. Energy and Environmental Science, 2021, 14, 3393-3419.	30.8	213
4	An operationally flexible fuel cell based on quaternary ammonium-biphosphate ion pairs. Nature Energy, 2016, 1, .	39.5	206
5	Alkaline Stability of Benzyl Trimethyl Ammonium Functionalized Polyaromatics: A Computational and Experimental Study. Chemistry of Materials, 2014, 26, 5675-5682.	6.7	152
6	Synergistically integrated phosphonated poly(pentafluorostyrene) for fuel cells. Nature Materials, 2021, 20, 370-377.	27.5	112
7	Vanadium redox flow battery efficiency and durability studies of sulfonated Diels Alder poly(phenylene)s. Electrochemistry Communications, 2012, 20, 48-51.	4.7	110
8	Phenyl Oxidation Impacts the Durability of Alkaline Membrane Water Electrolyzer. ACS Applied Materials & Interfaces, 2019, 11, 9696-9701.	8.0	79
9	Protonated phosphonic acid electrodes for high power heavy-duty vehicle fuel cells. Nature Energy, 2022, 7, 248-259.	39.5	65
10	Asymmetric electrode ionomer for low relative humidity operation of anion exchange membrane fuel cells. Journal of Materials Chemistry A, 2020, 8, 14135-14144.	10.3	60
11	Evaluation of Diels–Alder poly(phenylene) anion exchange membranes in all-vanadium redox flow batteries. Electrochemistry Communications, 2014, 43, 63-66.	4.7	58
12	Elucidating the Role of Hydroxide Electrolyte on Anion-Exchange-Membrane Water Electrolyzer Performance. Journal of the Electrochemical Society, 2021, 168, 054522.	2.9	54
13	Performance and durability of anion exchange membrane water electrolyzers using down-selected polymer electrolytes. Journal of Materials Chemistry A, 2021, 9, 22670-22683.	10.3	34
14	Engineered Thin Diffusion Layers for Anion-Exchange Membrane Electrolyzer Cells with Outstanding Performance. ACS Applied Materials & Interfaces, 2021, 13, 50957-50964.	8.0	19
15	Durable and highly selective ion transport of a sulfonated Diels Alder Poly(phenylene) for vanadium redox flow batteries. Journal of Power Sources, 2022, 520, 230805.	7.8	9
16	Hydrophobic Quaternized Poly(fluorene) Ionomers for Emerging Fuel Cells. ACS Applied Energy Materials, 2022, 5, 2663-2668.	5.1	7
17	Electrode optimization for efficient hydrogen production using an SO2-depolarized electrolysis cell. International Journal of Hydrogen Energy, 2022, 47, 14180-14185.	7.1	4
18	Acid-catalyzed benzoylation reactions of Diels-Alder polyphenylenes. Polymer, 2018, 158, 190-197.	3.8	3