
Marc Petit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/621273/publications.pdf Version: 2024-02-01

MARC PETIT

#	Article	IF	CITATIONS
1	Surface Modification Using Phosphonic Acids and Esters. Chemical Reviews, 2012, 112, 3777-3807.	47.7	706
2	C–H Activation/Functionalization Catalyzed by Simple, Well-Defined Low-Valent Cobalt Complexes. Journal of the American Chemical Society, 2015, 137, 2448-2451.	13.7	111
3	Phosphate-dependent stimulation of MGP and OPN expression in osteoblasts via the ERK1/2 pathway is modulated by calcium. Bone, 2011, 48, 894-902.	2.9	107
4	Iron and cobalt catalysis: new perspectives in synthetic radical chemistry. Chemical Society Reviews, 2020, 49, 8501-8542.	38.1	91
5	Relaying Asymmetry of Transient Atropisomers ofo-Iodoanilides by Radical Cyclizations. Journal of the American Chemical Society, 2005, 127, 14994-14995.	13.7	90
6	Towards Zirconium Phosphonate-Based Microarrays for Probing DNAâ^Protein Interactions: Critical Influence of the Location of the Probe Anchoring Groups. Journal of the American Chemical Society, 2008, 130, 6243-6251.	13.7	83
7	Regio- and Stereoselective Hydrosilylation of Unsymmetrical Alkynes Catalyzed by a Well-Defined, Low-Valent Cobalt Catalyst. Organic Letters, 2016, 18, 4242-4245.	4.6	66
8	Totally Chemo- and Regioselective Cobalt(I)-Mediated Formal Intermolecular Cyclotrimerization of Alkynes. Organic Letters, 2004, 6, 1519-1521.	4.6	62
9	Synthesis of 1,2-Dihydropyridines Catalyzed by Well-Defined Low-Valent Cobalt Complexes: C–H Activation Made Simple. ACS Catalysis, 2015, 5, 7493-7497.	11.2	60
10	Synthesis of 4:5-Benzo-1-cobalta-2-silacyclopentenes and their Reactions with Alkynes and Alkenes:Â An Expedient Route to Silicon-Containing Polycyclic Frameworks. Organometallics, 2007, 26, 819-830.	2.3	55
11	Asymmetric reactions of axially chiral amides: use of removable ortho-substituents in radical cyclizations of o-iodoacrylanilides and N-allyl-N-o-iodoacrylamides. Tetrahedron, 2004, 60, 7543-7552.	1.9	53
12	C2-Alkylation and Alkenylation of Indoles Catalyzed by a Low-Valent Cobalt Complex in the Absence of Reductant. Organic Letters, 2016, 18, 2292-2295.	4.6	53
13	Cobalt(I)-Mediated [2 + 2 + 2] Cyclization of Allenediynes toward a Diastereoselective Approach to 11-Aryl Steroid Skeletons. Organic Letters, 2004, 6, 3937-3940.	4.6	48
14	Reaction of Zoledronate with β-Tricalcium Phosphate for the Design of Potential Drug Device Combined Systems. Chemistry of Materials, 2008, 20, 182-191.	6.7	48
15	New Efficient Construction of the ABC Core of the Taxoids via a Sequence of Consecutive Cobalt(I)-Mediated [2 + 2 + 2] and [4 + 2] Cyclizations. Organic Letters, 2002, 4, 1027-1029.	4.6	41
16	Hybrid materials applied to biotechnologies: coating of calcium phosphates for the design of implants active against bone resorption disorders. Journal of Materials Chemistry, 2005, 15, 3869.	6.7	41
17	New and Efficient Procedure for the Preparation of Unsymmetrical Silaketals. Organic Letters, 2003, 5, 2037-2040.	4.6	39
18	The in vivo degradation of a ruthenium labelled polysaccharide-based hydrogel for bone tissue engineering. Biomaterials, 2009, 30, 1568-1577.	11.4	39

MARC PETIT

#	Article	IF	CITATIONS
19	Bisphosphonate Adaptors for Specific Protein Binding on Zirconium Phosphonate-based Microarrays. Bioconjugate Chemistry, 2009, 20, 2270-2277.	3.6	36
20	Hydrido obalt Catalyst as a Selective Tool for the Dimerisation of Arylacetylenes: Scope and Theoretical Studies. Advanced Synthesis and Catalysis, 2013, 355, 2584-2590.	4.3	36
21	Hcp cobalt nanocrystals with high magnetic anisotropy prepared by easy one-pot synthesis. Nanoscale, 2016, 8, 18640-18645.	5.6	35
22	From an Acyclic, Polyunsaturated Precursor to the Polycyclic Taxane Ring System: The [4+2]/[2+2+2] and [2+2+2]/[4+2] Cyclization Strategies. European Journal of Organic Chemistry, 2006, 2006, 1413-1421.	2.4	34
23	Niobium-Catalyzed Intramolecular Addition of O–H and N–H Bonds to Alkenes: A Tool for Hydrofunctionalization. Organic Letters, 2017, 19, 2062-2065.	4.6	34
24	Cobalt-mediated cyclotrimerization and cycloisomerization reactions. Synthetic applications. Pure and Applied Chemistry, 1999, 71, 1463-1470.	1.9	33
25	Catalytic Version of Enediyne Cobaltâ€Mediated Cycloaddition and Selective Access to Unusual Bicyclic Trienes. Chemistry - A European Journal, 2013, 19, 5830-5835.	3.3	32
26	Diastereoselective approach to 11-aryl steroid skeletons through a cobalt(I)-mediated [2+2+2] cyclization of allenediynes. Tetrahedron, 2006, 62, 10582-10593.	1.9	31
27	Hydroboration and Diboration of Internal Alkynes Catalyzed by a Well-Defined Low-Valent Cobalt Catalyst. Synthesis, 2017, 49, 3895-3904.	2.3	27
28	Novel phosphate–phosphonate hybrid nanomaterials applied to biology. Progress in Solid State Chemistry, 2006, 34, 257-266.	7.2	25
29	Synthetic Usefulness of the Cobalt(I)-Mediated Ene Type Reaction for the Diastereoselective Construction of Bicyclo[n.3.0]derivatives. Synlett, 1997, 1997, 931-932.	1.8	24
30	Poly(dG) Spacers Lead to Increased Surface Coverage of DNA Probes: An XPS Study of Oligonucleotide Binding to Zirconium Phosphonate Modified Surfaces. Langmuir, 2008, 24, 7394-7399.	3.5	22
31	Implication of a Silyl Cobalt Dihydride Complex as a Useful Catalyst for the Hydrosilylation of Imines. ACS Catalysis, 2021, 11, 14262-14273.	11.2	22
32	Role of Oleylamine Revisited: An Original Disproportionation Route to Monodispersed Cobalt and Nickel Nanocrystals. Chemistry of Materials, 2019, 31, 960-968.	6.7	21
33	Mild Niobium-Catalyzed [2 + 2 + 2] Cycloaddition of Sila-triynes: EasyÂAccess to Polysubstituted Benzosilacyclobutenes. Organic Letters, 2015, 17, 844-847.	4.6	19
34	Gold-Catalyzed Polymerization Based on Carbene Polycyclopropanation. Macromolecules, 2014, 47, 6652-6656.	4.8	18
35	Engineering of a phosphorylatable tag for specific protein binding on zirconium phosphonate based microarrays. Journal of Biological Inorganic Chemistry, 2012, 17, 399-407.	2.6	16
36	XPS investigation of DNA binding to zirconium-phosphonate surfaces. Colloids and Surfaces B: Biointerfaces, 2007, 58, 34-38.	5.0	14

MARC PETIT

#	Article	IF	CITATIONS
37	A well-defined low-valent cobalt catalyst Co(PMe ₃) ₄ with dimethylzinc: a simple catalytic approach for the reductive dimerization of benzyl halides. New Journal of Chemistry, 2016, 40, 9912-9916.	2.8	13
38	Looking forward: a glance into the future of organic chemistry. New Journal of Chemistry, 2006, 30, 823-831.	2.8	11
39	Nitrogen-Based Chirality Effects in Novel Mixed Phosphorus/Nitrogen Ligands Applied to Palladium-Catalyzed Allylic Substitutions. Organometallics, 2008, 27, 5997-6004.	2.3	11
40	A HELIXOLâ€Đerived Bisphosphinite Ligand: Synthesis and Application in Goldâ€Catalyzed Enynes Cycloisomerization. European Journal of Organic Chemistry, 2019, 2019, 2129-2137.	2.4	9
41	Phosphonateâ€Mediated Immobilization of Rhodium/Bipyridine Hydrogenation Catalysts. Chemistry - A European Journal, 2018, 24, 2457-2465.	3.3	7
42	Simpler and Cleaner Synthesis of Variously Capped Cobalt Nanocrystals Applied in the Semihydrogenation of Alkynes. Inorganic Chemistry, 2020, 59, 13972-13978.	4.0	6
43	Helical Bisphosphinites in Asymmetric Tsujiâ€Trost Allylation: a Remarkable P:Pd Ratio Effect. ChemCatChem, 2021, 13, 4543-4548.	3.7	6
44	Labeling of a self-hardening bone substitute using ruthenium tris-bipyridine complexes, for the analysis of its in vivo metabolism. Comptes Rendus Chimie, 2008, 11, 641-649.	0.5	3
45	Chapter 13. Application of Metal Phosphonates to Biotechnologies. , 2011, , 420-437.		3
46	Calcium is required for phosphate-dependent stimulation of MGP and OPN expression in osteoblasts. Bone, 2008, 42, S24.	2.9	1
47	The role of calcium phosphate crystals in the phosphate-dependent activation of osteoblasts. Bone, 2009, 44, S248.	2.9	1
48	The five shades of oleylamine in a morphological transition of spherical cobalt nanospheres to nanorods. Nanoscale, 2021, 13, 11289-11297.	5.6	1
49	New and Efficient Procedure for the Preparation of Unsymmetrical Silaketals ChemInform, 2003, 34, no.	0.0	0
50	Totally Chemo- and Regioselective Cobalt(I)-Mediated Formal Intermolecular Cyclotrimerization of Alkynes ChemInform, 2004, 35, no.	0.0	0
51	Asymmetric Reactions of Axially Chiral Amides: Use of Removable ortho-Substituents in Radical Cyclizations of o-lodoacrylanilides and N-Allyl-N-o-iodoacrylamides ChemInform, 2004, 35, no.	0.0	0
52	Asymmetric Reactions of Axially Chiral Amides: Use of Removable ortho-Substituents in Radical Cyclizations of o-lodoacrylanilides and N-Allyl-N-o-iodoacrylamides ChemInform, 2004, 35, no.	0.0	0
53	The role of calcium-phosphate crystals in the phosphate-dependent activation of osteoblasts. Bone, 2010, 46, S50.	2.9	0
54	Regioselective preparation of tetrasubstituted alkenes from ketones using Krief methodology as a key step for a straightforward synthesis of dienynes. Arkivoc, 2007, 2007, 278-291.	0.5	0