List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6212711/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermoddem: A geochemical database focused on low temperature water/rock interactions and waste materials. Applied Geochemistry, 2012, 27, 2107-2116.	3.0	350
2	ANDRA underground research laboratory: interpretation of the mineralogical and geochemical data acquired in the Callovian–Oxfordian formation by investigative drilling. Physics and Chemistry of the Earth, 2004, 29, 55-77.	2.9	275
3	Cement/clay interactions $\hat{a} \in$ A review: Experiments, natural analogues, and modeling. Waste Management, 2006, 26, 776-788.	7.4	222
4	A robust model for pore-water chemistry of clayrock. Geochimica Et Cosmochimica Acta, 2009, 73, 6470-6487.	3.9	177
5	Modelling the porewater chemistry of the Callovian–Oxfordian formation at a regional scale. Comptes Rendus - Geoscience, 2006, 338, 917-930.	1.2	135
6	Chemical model for cement-based materials: Temperature dependence of thermodynamic functions for nanocrystalline and crystalline C–S–H phases. Cement and Concrete Research, 2010, 40, 851-866.	11.0	132
7	Influence of reaction kinetics and mesh refinement on the numerical modelling of concrete/clay interactions. Journal of Hydrology, 2009, 364, 58-72.	5.4	125
8	Modeling diffusion of an alkaline plume in a clay barrier. Applied Geochemistry, 2004, 19, 1505-1515.	3.0	99
9	Geosynthetic Clay Liner Interaction with Leachate: Correlation between Permeability, Microstructure, and Surface Chemistry. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2005, 131, 740-749.	3.0	88
10	Chemical model for cement-based materials: Thermodynamic data assessment for phases other than C–S–H. Cement and Concrete Research, 2010, 40, 1360-1374.	11.0	88
11	Cation Exchange Selectivity Coefficient Values on Smectite and Mixed‣ayer Illite/Smectite Minerals. Soil Science Society of America Journal, 2009, 73, 928-942.	2.2	73
12	Predicting long-term geochemical alteration of wellbore cement in a generic geological CO2 confinement site: Tackling a difficult reactive transport modeling challenge. Journal of Hydrology, 2012, 420-421, 340-359.	5.4	71
13	Selection of coals of different maturities for CO2 Storage by modelling of CH4 and CO2 adsorption isotherms. International Journal of Coal Geology, 2011, 87, 80-86.	5.0	67
14	Ex situ mineral carbonation for CO2 mitigation: Evaluation of mining waste resources, aqueous carbonation processability and life cycle assessment (Carmex project). Minerals Engineering, 2014, 59, 52-63.	4.3	66
15	Biogeochemical processes in a clay formation in situ experiment: Part E – Equilibrium controls on chemistry of pore water from the Opalinus Clay, Mont Terri Underground Research Laboratory, Switzerland. Applied Geochemistry, 2011, 26, 990-1008.	3.0	63
16	Na+ and HTO diffusion in compacted bentonite: Effect of surface chemistry and related texture. Journal of Hydrology, 2009, 370, 9-20.	5.4	62
17	Thermodynamic properties of illite, smectite and beidellite by calorimetric methods: Enthalpies of formation, heat capacities, entropies and Gibbs free energies of formation. Geochimica Et Cosmochimica Acta, 2012, 89, 279-301.	3.9	61
18	Mineralogical and isotopic record of biotic and abiotic diagenesis of the Callovian–Oxfordian clayey formation of Bure (France). Geochimica Et Cosmochimica Acta, 2011, 75, 2633-2663.	3.9	59

#	Article	IF	CITATIONS
19	Arsenic behaviour in gold-ore mill tailings, Massif Central, France: hydrogeochemical study and investigation of in situ redox signatures. Applied Geochemistry, 2004, 19, 1785-1800.	3.0	58
20	Natural iodine in a clay formation: Implications for iodine fate in geological disposals. Geochimica Et Cosmochimica Acta, 2010, 74, 16-29.	3.9	58
21	Thermodynamic properties of anhydrous smectite MX-80, illite IMt-2 and mixed-layer illite–smectite ISCz-1 as determined by calorimetric methods. Part I: Heat capacities, heat contents and entropies. Geochimica Et Cosmochimica Acta, 2007, 71, 5463-5473.	3.9	57
22	Applying the squeezing technique to highly consolidated clayrocks for pore water characterisation: Lessons learned from experiments at the Mont Terri Rock Laboratory. Applied Geochemistry, 2014, 49, 2-21.	3.0	54
23	Origins of elements building travertine and tufa: New perspectives provided by isotopic and geochemical tracers. Sedimentary Geology, 2016, 334, 97-114.	2.1	53
24	On the mobility and potential retention of iodine in the Callovian–Oxfordian formation. Physics and Chemistry of the Earth, 2007, 32, 539-551.	2.9	50
25	A generalized model for predicting the thermodynamic properties of clay minerals. Numerische Mathematik, 2015, 315, 734-780.	1.4	50
26	Two cation exchange models for direct and inverse modelling of solution major cation composition in equilibrium with illite surfaces. Geochimica Et Cosmochimica Acta, 2007, 71, 1098-1114.	3.9	48
27	Experimental Measurement of CO ₂ Solubility in Aqueous NaCl Solution at Temperature from 323.15 to 423.15 K and Pressure of up to 20 MPa. Journal of Chemical & Engineering Data, 2016, 61, 3573-3584.	1.9	47
28	Geochemical characterization and modelling of the Toarcian/Domerian porewater at the Tournemire underground research laboratory. Applied Geochemistry, 2012, 27, 1417-1431.	3.0	45
29	Dissolution kinetics of synthetic Na-smectite. An integrated experimental approach. Geochimica Et Cosmochimica Acta, 2011, 75, 5849-5864.	3.9	44
30	Benchmarks for multicomponent reactive transport across a cement/clay interface. Computational Geosciences, 2015, 19, 635-653.	2.4	43
31	In-situ interaction of cement paste and shotcrete with claystones in a deep disposal context. Numerische Mathematik, 2012, 312, 314-356.	1.4	42
32	Biogeochemical processes in a clay formation in situ experiment: Part A – Overview, experimental design and water data of an experiment in the Opalinus Clay at the Mont Terri Underground Research Laboratory, Switzerland. Applied Geochemistry, 2011, 26, 931-953.	3.0	40
33	Development of an attrition-leaching hybrid process for direct aqueous mineral carbonation. Chemical Engineering Journal, 2015, 262, 716-726.	12.7	40
34	Cation exchanged Fe(II) and Sr compared to other divalent cations (Ca,Mg) in the bure Callovian–Oxfordian formation: Implications for porewater composition modelling. Applied Geochemistry, 2008, 23, 641-654.	3.0	39
35	Quantifying the extent of flowback of hydraulic fracturing fluids using chemical and isotopic tracer approaches. Applied Geochemistry, 2018, 93, 20-29.	3.0	38
36	Geochemical and sulfate isotopic evolution of flowback and produced waters reveals water-rock interactions following hydraulic fracturing of a tight hydrocarbon reservoir. Science of the Total Environment, 2019, 687, 1389-1400.	8.0	37

#	Article	IF	CITATIONS
37	Thermodynamic properties of chlorite CCa-2. Heat capacities, heat contents and entropies. Geochimica Et Cosmochimica Acta, 2009, 73, 4738-4749.	3.9	35
38	New Perspectives in the Industrial Exploration for Native Hydrogen. Elements, 2020, 16, 8-9.	0.5	34
39	The lacustrine microbial carbonate factory of the successive Lake Bonneville and Great Salt Lake, Utah, <scp>USA</scp> . Sedimentology, 2019, 66, 165-204.	3.1	33
40	Experimental Measurement of CO ₂ Solubility in Aqueous CaCl ₂ Solution at Temperature from 323.15 to 423.15 K and Pressure up to 20 MPa Using the Conductometric Titration. Journal of Chemical & Engineering Data, 2017, 62, 4228-4234.	1.9	30
41	Estimate of clay minerals amounts from XRD pattern modeling: The Arquant model. Physics and Chemistry of the Earth, 2007, 32, 135-144.	2.9	29
42	Metal speciation in landfill leachates with a focus on the influence of organic matter. Waste Management, 2011, 31, 2036-2045.	7.4	29
43	Strontium distribution and origins in a natural clayey formation (Callovian-Oxfordian, Paris Basin,) Tj ETQq1 1 ().784314 rg 3.9	BT /Overlook
44	Mineralogical and Isotopic Record of Diagenesis from the Opalinus Clay Formation at Benken, Switzerland: Implications for the Modeling of Pore-Water Chemistry in a Clay Formation. Clays and Clay Minerals, 2014, 62, 286-312.	1.3	25
45	Oligo-Miocene lacustrine microbial and metazoan buildups from the Limagne Basin (French Massif) Tj ETQq1 1	0.784314	rgB <u>T</u> /Overloc
46	Native H ₂ Exploration in the Western Pyrenean Foothills. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009917.	2.5	25
47	Simulation of Cement/Clay Interactions: Feedback on the Increasing Complexity of Modelling Strategies. Transport in Porous Media, 2014, 104, 385-405.	2.6	24
48	Stable isotope composition of CO2 outgassed from cores of argillites: a simple method to constrain δ180 of porewater and δ13C of dissolved carbon in mudrocks. Applied Geochemistry, 2005, 20, 713-725.	3.0	23
49	Thermodynamic properties of saponite, nontronite, and vermiculite derived from calorimetric measurements. American Mineralogist, 2013, 98, 1834-1847.	1.9	21
50	Volcanic rock alterations of the Kwanza Basin, offshore Angola - Insights from an integrated petrological, geochemical and numerical approach. Marine and Petroleum Geology, 2017, 80, 394-411.	3.3	21
51	Rift and salt-related multi-phase dolomitization: example from the northwestern Pyrenees. Marine and Petroleum Geology, 2021, 126, 104932.	3.3	21
52	Biogeochemical processes in a clay formation in situ experiment: Part F – Reactive transport modelling. Applied Geochemistry, 2011, 26, 1009-1022.	3.0	20
53	Hydrogeochemical models locating sulfate-methane transition zone in marine sediments overlying black shales: A new tool to locate biogenic methane?. Marine and Petroleum Geology, 2015, 59, 563-574.	3.3	20
54	Formation of magnesiumâ€smectite during lacustrine carbonates early diagenesis: Study case of the volcanic crater lake Dziani Dzaha (Mayotte – Indian Ocean). Sedimentology, 2019, 66, 983-1001.	3.1	20

#	Article	IF	CITATIONS
55	Thermodynamic evidence of giant salt deposit formation by serpentinization: an alternative mechanism to solar evaporation. Scientific Reports, 2019, 9, 11720.	3.3	20
56	Biogeochemical processes in a clay formation in situ experiment: Part B $\hat{a} \in$ Results from overcoring and evidence of strong buffering by the rock formation. Applied Geochemistry, 2011, 26, 954-966.	3.0	19
57	Effects of a thermal perturbation on mineralogy and pore water composition in a clay-rock: An experimental and modeling study. Geochimica Et Cosmochimica Acta, 2017, 197, 193-214.	3.9	19
58	Biotic–Abiotic Influences on Modern Ca–Si-Rich Hydrothermal Spring Mounds of the Pastos Grandes Volcanic Caldera (Bolivia). Minerals (Basel, Switzerland), 2019, 9, 380.	2.0	19
59	Effects of smectite dehydration and illitisation on overpressures in sedimentary basins: A coupled chemical and thermo-hydro-mechanical modelling approach. Marine and Petroleum Geology, 2020, 111, 166-178.	3.3	19
60	Impact of geodynamics on fluid circulation and diagenesis of carbonate reservoirs in a foreland basin: Example of the Upper Lacq reservoir (Aquitaine basin, SW France). Marine and Petroleum Geology, 2020, 111, 676-694.	3.3	19
61	Coal laboratory characterisation for CO2 geological storage. Energy Procedia, 2011, 4, 3147-3154.	1.8	18
62	Early Diagenesis of Lacustrine Carbonates in Volcanic Settings: The Role of Magmatic CO ₂ (Lake Dziani Dzaha, Mayotte, Indian Ocean). ACS Earth and Space Chemistry, 2020, 4, 363-378.	2.7	18
63	Comparative EPMA and μ-XRF methods for mapping micro-scale distribution of iodine in biocarbonates of the Callovian–Oxfordian clayey formation at Bure, Eastern part of the Paris Basin. Physics and Chemistry of the Earth, 2010, 35, 271-277.	2.9	17
64	Chemical Conditions in Clay-Rocks. Developments in Clay Science, 2015, 6, 71-100.	0.5	17
65	The Role of the Substrate on the Mineralization Potential of Microbial Mats in A Modern Freshwater River (Paris Basin, France). Minerals (Basel, Switzerland), 2019, 9, 359.	2.0	17
66	Diversity and origin of quartz cements in continental carbonates: Example from the Lower Cretaceous rift deposits of the South Atlantic margin. Applied Geochemistry, 2019, 100, 22-41.	3.0	17
67	Diagenesis in Mesozoic carbonate rocks in the North Pyrénées (France) from mineralogy and fluid inclusion analysis: Example of Rousse reservoir and caprock. Chemical Geology, 2019, 508, 30-46.	3.3	16
68	Thermodynamics for clay minerals: Calculation tools and application to the case of illite/smectite interstratified minerals. Applied Geochemistry, 2021, 130, 104986.	3.0	16
69	Nature and Origin of Mineralizing Fluids in Hyperextensional Systems: The Case of Cretaceous Mg Metasomatism in the Pyrenees. Geofluids, 2019, 2019, 1-18.	0.7	14
70	Prediction of the calcium carbonate budget in a sedimentary basin: A "sourceâ€ŧoâ€sink―approach applied to Great Salt Lake, Utah, USA. Basin Research, 2020, 32, 1005-1034.	2.7	13
71	Sequential extraction and spectroscopic characterisation of organic matter from the Callovo-Oxfordian formation. Organic Geochemistry, 2010, 41, 221-233.	1.8	12
72	Controls of Ca/Mg/Fe Activity Ratios in Pore Water Chemistry Models of the Callovian-Oxfordian Clay Formation. Procedia Earth and Planetary Science, 2013, 7, 475-478.	0.6	12

#	Article	IF	CITATIONS
73	Thermodynamic properties of chlorite and berthierine derived from calorimetric measurements. Physics and Chemistry of Minerals, 2014, 41, 603-615.	0.8	12
74	Dissolved CO2 and Alkane Gas in Clay Formations. Procedia Earth and Planetary Science, 2015, 13, 88-91.	0.6	12
75	Equilibrium partial pressure of CO2 in Callovian–Oxfordian argillite as a function of relative humidity: Experiments and modelling. Geochimica Et Cosmochimica Acta, 2016, 186, 91-104.	3.9	12
76	Equilibrium Partial Pressure of CO2 in the Callovo-Oxfordian Argillite as a Function of Relative Humidity. Procedia Earth and Planetary Science, 2013, 7, 459-462.	0.6	11
77	Metals and radionuclides (MaR) in the Alum Shale of Denmark: Identification of MaR-bearing phases for the better management of hydraulic fracturing waters. Journal of Natural Gas Science and Engineering, 2018, 53, 139-152.	4.4	11
78	Simulations of the Impact of Co-injected Gases on CO2 Storage, the SIGARRR Project: First Results on Water-gas Interactions Modeling. Energy Procedia, 2014, 63, 3160-3171.	1.8	10
79	The origin of continental carbonates in Andean salars: A multi-tracer geochemical approach in Laguna Pastos Grandes (Bolivia). Geochimica Et Cosmochimica Acta, 2020, 279, 220-237.	3.9	9
80	Natural gas of radiolytic origin: An overlooked component of shale gas. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2114720119.	7.1	9
81	Variability of Carbonate Isotope Signatures in a Hydrothermally Influenced System: Insights from the Pastos Grandes Caldera (Bolivia). Minerals (Basel, Switzerland), 2020, 10, 989.	2.0	8
82	Epigenic vs. hypogenic speleogenesis governed by H2S/CO2 hydrothermal input and Quaternary icefield dynamics (NE French Pyrenees). Geomorphology, 2021, 387, 107769.	2.6	7
83	Simulations of the Impact of Co-injected Gases on CO2 Storage, the SIGARRR Project: Processes and Geochemical Approaches for Gas-water-Salt Interactions Modeling. Energy Procedia, 2017, 114, 3322-3334.	1.8	5
84	The diagenetic history of the giant Lacq gas field, witness to the apto-albian rifting and the Pyrenean orogeny, revealed by fluid and basin modeling. Marine and Petroleum Geology, 2021, 133, 105250.	3.3	5
85	Quantification of carbon dioxide sourced by mineral reactions in ultradeep sedimentary basins. Marine and Petroleum Geology, 2017, 81, 112-133.	3.3	3
86	Natural CH4 Gas Seeps in the French Alps: Characteristics, Typology and Contribution to CH4 Natural Emissions to the Atmosphere. Energy Procedia, 2017, 114, 3020-3032.	1.8	3
87	Thermodynamic properties of mixed-layer illite-smectite by calorimetric methods: Acquisition of the enthalpies of mixing of illite and smectite layers. Journal of Chemical Thermodynamics, 2019, 138, 78-97.	2.0	3
88	Overpressure generation by smectite dehydration in sedimentary basins constrained by salinity dilution and stable isotopes. Applied Geochemistry, 2021, 131, 105035.	3.0	3
89	The North Pyrenean Frontal Thrust: structure, timing and late fluid circulation inferred from seismic and thermal-geochemical analyses of well data. Bulletin - Societie Geologique De France, 2021, 192, 52.	2.2	3
90	Toxic Metals in Shales: Questions and Methods for a Better Management of Flow-Back Waters , 2014, ,		2

#	Article	IF	CITATIONS
91	Geochemistry of Aquifer in Contact with Alum Shale: Evidence of Limited Contaminant Transfers. Procedia Earth and Planetary Science, 2017, 17, 786-789.	0.6	2
92	Rock Types in the Scandinavian Alum Shale Resource Play - Definitions and Predictions. , 2015, , .		2
93	Unravelling the Processes of the H2S Generation in the North-western Pyrenees (France). , 2018, , .		2
94	Successive Modes of Carbonate Precipitation in Microbialites along the Hydrothermal Spring of La Salsa in Laguna Pastos Grandes (Bolivian Altiplano). Geosciences (Switzerland), 2022, 12, 88.	2.2	2
95	Experimental study of chemical evolution and isotope fractionation of Cl and Br in pore water expelled during strong clay compaction. Applied Geochemistry, 2022, 140, 105274.	3.0	2
96	Toward the Sustainable Use of Groundwater Springs: A Case Study from Namibia. Sustainability, 2022, 14, 3995.	3.2	2
97	Hydrothermal fluid circulations in the western Pyrenees: new data on stable isotopes, in-situ gas analysis and fluid inclusions. E3S Web of Conferences, 2019, 98, 01001.	0.5	1
98	Cl/Br and Î′37Cl evolution in seawater expelled during the compaction of MX-80 smectite. E3S Web of Conferences, 2019, 98, 12022.	0.5	1
99	Synsedimentary to early diagenetic rejuvenation of barite-sulfides ore deposits: Example of the Triassic intrakarstic mineralization in the Lodève basin (France). Marine and Petroleum Geology, 2020, 119, 104464.	3.3	1
100	Quaternary tectonic and climate changes at the origin of travertine and calcrete in the eastern Betics (AlmerÃa region, SE Spain). Journal of the Geological Society, 2020, 177, 939-954.	2.1	1
101	Mineralogical and geochemical study of serpentinized peridotites from the North-Western Pyrenees: New insights on serpentinization along magma-poor continental passive margins. Lithos, 2021, 406-407, 106521.	1.4	1
102	Significance of H2 and CO release during thermal treatment of natural phyllosilicate-rich rocks. Chemical Geology, 2022, 588, 120647.	3.3	1
103	The origin of low salinity formation water in turbidite sandstone reservoirs: insights from natural isotopic and chemical tracers. , 2018, , .		0
104	Halogen stable isotope studies in formation waters, a comparison between their chlorine and bromine isotope systematics. , 2018, , .		0