
John M Woodley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6212440/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of Biocatalysis in Sustainable Chemistry. Chemical Reviews, 2018, 118, 801-838.	47.7	1,175
2	Biocatalysis for pharmaceutical intermediates: the future is now. Trends in Biotechnology, 2007, 25, 66-73.	9.3	609
3	Guidelines and Cost Analysis for Catalyst Production in Biocatalytic Processes. Organic Process Research and Development, 2011, 15, 266-274.	2.7	396
4	New opportunities for biocatalysis: making pharmaceutical processes greener. Trends in Biotechnology, 2008, 26, 321-327.	9.3	388
5	Parameters necessary to define an immobilized enzyme preparation. Process Biochemistry, 2020, 90, 66-80.	3.7	306
6	Gold atalyzed Aerobic Oxidation of 5â€Hydroxymethylfurfural in Water at Ambient Temperature. ChemSusChem, 2009, 2, 672-675.	6.8	289
7	The search for the ideal biocatalyst. Nature Biotechnology, 2002, 20, 37-45.	17.5	275
8	Synthesis of 5â€(Hydroxymethyl)furfural in Ionic Liquids: Paving the Way to Renewable Chemicals. ChemSusChem, 2011, 4, 451-458.	6.8	237
9	Process considerations for the asymmetric synthesis of chiral amines using transaminases. Biotechnology and Bioengineering, 2011, 108, 1479-1493.	3.3	212
10	Application of in situ product-removal techniques to biocatalytic processes. Trends in Biotechnology, 1999, 17, 395-402.	9.3	194
11	In Situ Product Removal as a Tool for Bioprocessing. Nature Biotechnology, 1993, 11, 1007-1012.	17.5	188
12	Towards large-scale synthetic applications of Baeyer-Villiger monooxygenases. Trends in Biotechnology, 2003, 21, 318-323.	9.3	184
13	Is enzyme immobilization a mature discipline? Some critical considerations to capitalize on the benefits of immobilization. Chemical Society Reviews, 2022, 51, 6251-6290.	38.1	183
14	Process intensification: A perspective on process synthesis. Chemical Engineering and Processing: Process Intensification, 2010, 49, 547-558.	3.6	181
15	Microscale technology and biocatalytic processes: opportunities and challenges for synthesis. Trends in Biotechnology, 2015, 33, 302-314.	9.3	167
16	Process integration for the conversion of glucose to 2,5-furandicarboxylic acid. Chemical Engineering Research and Design, 2009, 87, 1318-1327.	5.6	154
17	Protein engineering of enzymes for process applications. Current Opinion in Chemical Biology, 2013, 17, 310-316.	6.1	153
18	Multienzyme-Catalyzed Processes: Next-Generation Biocatalysis. Organic Process Research and Development. 2011. 15. 203-212.	2.7	149

#	Article	IF	CITATIONS
19	Efficient microwave-assisted synthesis of 5-hydroxymethylfurfural from concentrated aqueous fructose. Carbohydrate Research, 2009, 344, 2568-2572.	2.3	145
20	Optimal design of a multi-product biorefinery system. Computers and Chemical Engineering, 2011, 35, 1752-1766.	3.8	144
21	Phenomena Based Methodology for Process Synthesis Incorporating Process Intensification. Industrial & Engineering Chemistry Research, 2013, 52, 7127-7144.	3.7	134
22	Accelerated design of bioconversion processes using automated microscale processing techniques. Trends in Biotechnology, 2003, 21, 29-37.	9.3	129
23	Future directions for <i>inâ€situ</i> product removal (ISPR). Journal of Chemical Technology and Biotechnology, 2008, 83, 121-123.	3.2	128
24	Process considerations for the scale-up and implementation of biocatalysis. Food and Bioproducts Processing, 2010, 88, 3-11.	3.6	127
25	Fluid mixing in shaken bioreactors: Implications for scale-up predictions from microlitre-scale microbial and mammalian cell cultures. Chemical Engineering Science, 2006, 61, 2939-2949.	3.8	124
26	Process technology for multi-enzymatic reaction systems. Bioresource Technology, 2012, 115, 183-195.	9.6	124
27	A perspective on PSE in pharmaceutical process development and innovation. Computers and Chemical Engineering, 2012, 42, 15-29.	3.8	120
28	Large scale production of cyclohexanone monooxygenase from Escherichia coli TOP10 pQR239. Enzyme and Microbial Technology, 2001, 28, 265-274.	3.2	119
29	Synthesis of 5-hydroxymethylfurfural (HMF) by acid catalyzed dehydration of glucose–fructose mixtures. Chemical Engineering Journal, 2015, 273, 455-464.	12.7	114
30	Accelerating the implementation of biocatalysis in industry. Applied Microbiology and Biotechnology, 2019, 103, 4733-4739.	3.6	112
31	Application of mechanistic models to fermentation and biocatalysis for next-generation processes. Trends in Biotechnology, 2010, 28, 346-354.	9.3	111
32	Sustainable process synthesis–intensification. Computers and Chemical Engineering, 2015, 81, 218-244.	3.8	110
33	A generic methodology for processing route synthesis and design based on superstructure optimization. Computers and Chemical Engineering, 2017, 106, 892-910.	3.8	109
34	Directed evolution of biocatalytic processes. New Biotechnology, 2005, 22, 11-19.	2.7	107
35	Use of isolated cyclohexanone monooxygenase from recombinantEscherichia coli as a biocatalyst for Baeyer-Villiger and sulfide oxidations. Biotechnology and Bioengineering, 2002, 78, 489-496.	3.3	100
36	Introducing an Inâ€Situ Capping Strategy in Systems Biocatalysis To Access 6â€Aminohexanoic acid. Angewandte Chemie - International Edition, 2014, 53, 14153-14157.	13.8	95

#	Article	IF	CITATIONS
37	Substrate Supply for Effective Biocatalysis. Biotechnology Progress, 2007, 23, 74-82.	2.6	93
38	Biorefining: Computer aided tools for sustainable design and analysis of bioethanol production. Chemical Engineering Research and Design, 2009, 87, 1171-1183.	5.6	90
39	Life cycle assessment in green chemistry: overview of key parameters and methodological concerns. International Journal of Life Cycle Assessment, 2013, 18, 431-444.	4.7	90
40	Inhibition of Gas Hydrate Nucleation and Growth: Efficacy of an Antifreeze Protein from the Longhorn Beetle <i>Rhagium mordax</i> . Energy & Fuels, 2014, 28, 3666-3672.	5.1	90
41	Reactor Operation and Scale-Up of Whole Cell Baeyer-Villiger Catalyzed Lactone Synthesis. Biotechnology Progress, 2002, 18, 1039-1046.	2.6	88
42	Process Requirements of Galactose Oxidase Catalyzed Oxidation of Alcohols. Organic Process Research and Development, 2015, 19, 1580-1589.	2.7	88
43	Transketolase from Escherichia coli: A practical procedure for using the biocatalyst for asymmetric carbon-carbon bond synthesis. Tetrahedron: Asymmetry, 1996, 7, 2185-2188.	1.8	83
44	Guidelines for development and implementation of biocatalytic P450 processes. Applied Microbiology and Biotechnology, 2015, 99, 2465-2483.	3.6	83
45	Nextâ€Generation Catalysis for Renewables: Combining Enzymatic with Inorganic Heterogeneous Catalysis for Bulk Chemical Production. ChemCatChem, 2010, 2, 249-258.	3.7	81
46	Bioprocesses: Modeling needs for process evaluation and sustainability assessment. Computers and Chemical Engineering, 2010, 34, 1009-1017.	3.8	81
47	Bioinspired Multifunctional Membrane for Aquatic Micropollutants Removal. ACS Applied Materials & Interfaces, 2016, 8, 30511-30522.	8.0	81
48	New frontiers in biocatalysis for sustainable synthesis. Current Opinion in Green and Sustainable Chemistry, 2020, 21, 22-26.	5.9	81
49	Characterization of a recombinant Escherichia coli TOP10 [pQR239] whole-cell biocatalyst for stereoselective Baeyer–Villiger oxidations. Enzyme and Microbial Technology, 2003, 32, 347-355.	3.2	80
50	A Multidisciplinary Approach Toward the Rapid and Preparative-Scale Biocatalytic Synthesis of Chiral Amino Alcohols: A Concise Transketolase-/Ή-Transaminase-Mediated Synthesis of (2 <i>S</i> ,3 <i>S</i>)-2-Aminopentane-1,3-diol. Organic Process Research and Development, 2010, 14, 99-107.	2.7	80
51	Enzyme-catalysed carbon–carbon bond formation: use of transketolase from Escherichia coli. Journal of the Chemical Society Perkin Transactions 1, 1993, , 165-166.	0.9	76
52	The First 200-L Scale Asymmetric Baeyerâ^'Villiger Oxidation Using a Whole-Cell Biocatalyst. Organic Process Research and Development, 2008, 12, 660-665.	2.7	74
53	On oxygen limitation in a whole cell biocatalytic Baeyer–Villiger oxidation process. Biotechnology and Bioengineering, 2006, 95, 362-369.	3.3	72
54	Biocatalysts for selective introduction of oxygen. Biocatalysis and Biotransformation, 2009, 27, 1-26.	2.0	72

#	Article	IF	CITATIONS
55	Advances in the Process Development of Biocatalytic Processes. Organic Process Research and Development, 2013, 17, 1233-1238.	2.7	70
56	Reactor Selection for Effective Continuous Biocatalytic Production of Pharmaceuticals. Catalysts, 2019, 9, 262.	3.5	68
57	In situ visualization and effect of glycerol in lipase-catalyzed ethanolysis of rapeseed oil. Journal of Molecular Catalysis B: Enzymatic, 2011, 72, 213-219.	1.8	67
58	Application of Enzyme Coupling Reactions to Shift Thermodynamically Limited Biocatalytic Reactions. ChemCatChem, 2015, 7, 3094-3105.	3.7	67
59	Screening of organic solvents for bioprocesses using aqueous-organic two-phase systems. Biotechnology Advances, 2018, 36, 1801-1814.	11.7	67
60	PEER REVIEW ORIGINAL RESEARCH: EHS & amp; LCA assessment for 7-ACA synthesis <i>A case study for comparing biocatalytic & amp; chemical synthesis </i> . Industrial Biotechnology, 2008, 4, 180-192.	0.8	66
61	Sustainable bio-succinic acid production: superstructure optimization, techno-economic, and lifecycle assessment. Energy and Environmental Science, 2021, 14, 3542-3558.	30.8	65
62	A systematic methodology for design of tailor-made blended products. Computers and Chemical Engineering, 2014, 66, 201-213.	3.8	64
63	Rules for biocatalyst and reaction engineering to implement effective, NAD(P)H-dependent, whole cell bioreductions. Biotechnology Advances, 2015, 33, 1641-1652.	11.7	63
64	The use of microscale processing technologies for quantification of biocatalytic Baeyer-Villiger oxidation kinetics. Biotechnology and Bioengineering, 2002, 80, 42-49.	3.3	60
65	Group Contribution Based Estimation Method for Properties of Ionic Liquids. Industrial & Engineering Chemistry Research, 2019, 58, 4277-4292.	3.7	59
66	On the influence of oxygen and cell concentration in an SFPR whole cell biocatalytic Baeyer–Villiger oxidation process. Biotechnology and Bioengineering, 2006, 93, 1138-1144.	3.3	58
67	A multi-layered view of chemical and biochemical engineering. Chemical Engineering Research and Design, 2020, 155, A133-A145.	5.6	58
68	Bioprocess intensification for the effective production of chemical products. Computers and Chemical Engineering, 2017, 105, 297-307.	3.8	56
69	Toward scalable biocatalytic conversion of 5-hydroxymethylfurfural by galactose oxidase using coordinated reaction and enzyme engineering. Nature Communications, 2021, 12, 4946.	12.8	56
70	Identification and use of an alkane transporter plug-in for applications in biocatalysis and whole-cell biosensing of alkanes. Scientific Reports, 2014, 4, 5844.	3.3	54
71	Mussel-inspired co-deposition to enhance bisphenol A removal in a bifacial enzymatic membrane reactor. Chemical Engineering Journal, 2018, 336, 315-324.	12.7	53
72	The Potential of Biogas; the Solution to Energy Storage. ChemSusChem, 2019, 12, 2147-2153.	6.8	52

#	Article	IF	CITATIONS
73	Microbial Biocatalytic Processes and Their Development. Advances in Applied Microbiology, 2006, 60, 1-15.	2.4	51
74	Application of NAD(P)H oxidase for cofactor regeneration in dehydrogenase catalyzed oxidations. Journal of Molecular Catalysis B: Enzymatic, 2016, 134, 331-339.	1.8	50
75	A process synthesis-intensification framework for the development of sustainable membrane-based operations. Chemical Engineering and Processing: Process Intensification, 2014, 86, 173-195.	3.6	49
76	Considerations when Measuring Biocatalyst Performance. Molecules, 2019, 24, 3573.	3.8	48
77	Experimental determination of thermodynamic equilibrium in biocatalytic transamination. Biotechnology and Bioengineering, 2012, 109, 2159-2162.	3.3	47
78	Batch production of FAEE-biodiesel using a liquid lipase formulation. Journal of Molecular Catalysis B: Enzymatic, 2014, 105, 89-94.	1.8	47
79	A robust methodology for kinetic model parameter estimation for biocatalytic reactions. Biotechnology Progress, 2012, 28, 1186-1196.	2.6	46
80	A future perspective on the role of industrial biotechnology for chemicals production. Chemical Engineering Research and Design, 2013, 91, 2029-2036.	5.6	46
81	Scaleâ€up of industrial biodiesel production to 40 m ³ using a liquid lipase formulation. Biotechnology and Bioengineering, 2016, 113, 1719-1728.	3.3	46
82	Integrated working fluid-thermodynamic cycle design of organic Rankine cycle power systems for waste heat recovery. Applied Energy, 2017, 203, 442-453.	10.1	46
83	Production of naphthalene-cis-glycol by Pseudomonas putida in the presence of organic solvents. Enzyme and Microbial Technology, 1992, 14, 725-730.	3.2	45
84	Characterization of enzymatic <scp>D</scp> â€xylulose 5â€phosphate synthesis. Biotechnology and Bioengineering, 2008, 101, 761-767.	3.3	45
85	Kinetic study on the enzymatic esterification of octanoic acid and hexanol by immobilized Candida antarctica lipase B. Journal of Molecular Catalysis B: Enzymatic, 2014, 110, 64-71.	1.8	45
86	A Correlation between the Activity of <i>Candida antarctica</i> Lipase B and Differences in Binding Free Energies of Organic Solvent and Substrate. ACS Catalysis, 2016, 6, 6350-6361.	11.2	45
87	Characterization of the Chemoenzymatic Synthesis of N-Acetyl-D-neuraminic Acid (Neu5Ac). Biotechnology Progress, 1996, 12, 758-763.	2.6	44
88	Escherichia coli transketolase-catalyzed carbon-carbon bond formation: biotransformation characterization for reactor evaluation and selection. Enzyme and Microbial Technology, 1998, 22, 64-70.	3.2	44
89	Application of environmental and economic metrics to guide the development of biocatalytic processes. Green Processing and Synthesis, 2014, 3, 195-213.	3.4	44
90	Engineering of Biocatalysts and Biocatalytic Processes. Topics in Catalysis, 2014, 57, 301-320.	2.8	44

#	Article	IF	CITATIONS
91	Identification of critical parameters in liquid enzymeâ€catalyzed biodiesel production. Biotechnology and Bioengineering, 2014, 111, 2446-2453.	3.3	44
92	Measurement of oxygen transfer from air into organic solvents. Journal of Chemical Technology and Biotechnology, 2016, 91, 832-836.	3.2	44
93	Enzyme-catalysed carbon-carbon bond formation: Large-scale production of Escherichia coli transketolase. Journal of Biotechnology, 1996, 45, 173-179.	3.8	42
94	Alkaline biocatalysis for the direct synthesis ofN-acetyl-D-neuraminic acid (Neu5Ac) fromN-acetyl-D-glucosamine (GlcNAc). , 1999, 66, 131-136.		42
95	Candida cloacae oxidation of long-chain fatty acids to dioic acids. Enzyme and Microbial Technology, 2000, 27, 205-211.	3.2	42
96	Semiquantitative Process Screening for the Biocatalytic Synthesis ofd-Xylulose-5-phosphate. Organic Process Research and Development, 2006, 10, 605-610.	2.7	42
97	Kinetic model of biodiesel production using immobilized lipase Candida antarctica lipase B. Journal of Molecular Catalysis B: Enzymatic, 2013, 85-86, 156-168.	1.8	42
98	A model to assess the feasibility of shifting reaction equilibrium by acetone removal in the transamination of ketones using 2â€propylamine. Biotechnology and Bioengineering, 2014, 111, 309-319.	3.3	42
99	Determination of reactor operation for the microbial hydroxylation of toluene in a two-liquid phase process. Journal of Industrial Microbiology, 1995, 14, 382-388.	0.9	41
100	Better Biocatalytic Processes Faster:Â New Tools for the Implementation of Biocatalysis in Organic Synthesis. Organic Process Research and Development, 2002, 6, 434-440.	2.7	41
101	A systematic synthesis and design methodology to achieve process intensification in (bio) chemical processes. Computers and Chemical Engineering, 2012, 36, 189-207.	3.8	41
102	Automated Determination of Oxygenâ€Dependent Enzyme Kinetics in a Tubeâ€inâ€Tube Flow Reactor. ChemCatChem, 2017, 9, 3285-3288.	3.7	41
103	Influence of temperature and solvent concentration on the kinetics of the enzyme carbonic anhydrase in carbon capture technology. Chemical Engineering Journal, 2017, 309, 772-786.	12.7	41
104	Integration of biocatalytic conversions into chemical syntheses. Journal of Chemical Technology and Biotechnology, 2007, 82, 1063-1066.	3.2	40
105	Immobilisation of ω-transaminase for industrial application: Screening and characterisation of commercial ready to use enzyme carriers. Journal of Molecular Catalysis B: Enzymatic, 2015, 117, 54-61.	1.8	40
106	Characterization of a continuous agitated cell reactor for oxygen dependent biocatalysis. Biotechnology and Bioengineering, 2017, 114, 1222-1230.	3.3	40
107	Choice of biocatalyst form for scalable processes. Biochemical Society Transactions, 2006, 34, 301.	3.4	38
108	Process limitations in a whole-cell catalysed oxidation: Sensitivity analysis. Chemical Engineering Science, 2006, 61, 6646-6652.	3.8	38

#	Article	IF	CITATIONS
109	Whole-cell bio-oxidation of n-dodecane using the alkane hydroxylase system of P. putida GPo1 expressed in E. coli. Enzyme and Microbial Technology, 2011, 48, 480-486.	3.2	38
110	Chemoâ€enzymatic epoxidation–process options for improving biocatalytic productivity. Biotechnology Progress, 2011, 27, 67-76.	2.6	36
111	Immobilization of <i>Escherichia coli</i> containing ï‰â€transaminase activity in LentiKats®. Biotechnology Progress, 2012, 28, 693-698.	2.6	36
112	Continuous production of chitooligosaccharides by an immobilized enzyme in a dual-reactor system. Journal of Molecular Catalysis B: Enzymatic, 2016, 133, 211-217.	1.8	36
113	Integrated ionic liquid and process design involving azeotropic separation processes. Chemical Engineering Science, 2019, 203, 402-414.	3.8	36
114	Modelling of two enzyme reactions in a linked cofactor recycle system for chiral lactone synthesis. Chemical Engineering Science, 2000, 55, 2001-2008.	3.8	34
115	A Prospective Life Cycle Assessment (LCA) of Monomer Synthesis: Comparison of Biocatalytic and Oxidative Chemistry. ChemSusChem, 2019, 12, 1349-1360.	6.8	33
116	A model-based methodology for simultaneous design and control of a bioethanol production process. Computers and Chemical Engineering, 2010, 34, 2043-2061.	3.8	32
117	A two-stage enzymatic ethanol-based biodiesel production in a packed bed reactor. Journal of Biotechnology, 2012, 162, 407-414.	3.8	32
118	Towards the sustainable production of bulk-chemicals using biotechnology. New Biotechnology, 2020, 59, 59-64.	4.4	32
119	A new approach to bioconversion reaction kinetic parameter identification. AICHE Journal, 2008, 54, 2155-2163.	3.6	31
120	Prediction of properties of new halogenated olefins using two group contribution approaches. Fluid Phase Equilibria, 2017, 433, 79-96.	2.5	31
121	An alternative bioreactor concept for application of an isolated oxidoreductase for asymmetric ketone reduction. Tetrahedron, 2004, 60, 781-788.	1.9	30
122	Chemoenzymatic Combination of Glucose Oxidase with Titanium Silicaliteâ€1. ChemCatChem, 2010, 2, 943-945.	3.7	30
123	Can graphene oxide improve the performance of biocatalytic membrane?. Chemical Engineering Journal, 2019, 359, 982-993.	12.7	30
124	Gas Solubility in Ionic Liquids: UNIFAC-IL Model Extension. Industrial & Engineering Chemistry Research, 2020, 59, 16805-16821.	3.7	30
125	Targeted modification of polyamide nanofiltration membrane for efficient separation of monosaccharides and monovalent salt. Journal of Membrane Science, 2021, 628, 119250.	8.2	30
126	Design of a control system for biotransformation of toxic substrates: toluene hydroxylation by Pseudomonas putida UV4. Enzyme and Microbial Technology, 2000, 26, 530-536.	3.2	29

#	Article	IF	CITATIONS
127	Integrating protein engineering with process design for biocatalysis. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170062.	3.4	29
128	Immobilised transketolase for carbon–carbon bond synthesis: biocatalyst stability. Journal of Molecular Catalysis B: Enzymatic, 1999, 7, 223-231.	1.8	28
129	Reaction modelling and simulation to assess the integrated use of transketolase and ω-transaminase for the synthesis of an aminotriol. Biocatalysis and Biotransformation, 2006, 24, 449-457.	2.0	28
130	Application of modeling and simulation tools for the evaluation of biocatalytic processes: A future perspective. Biotechnology Progress, 2009, 25, 1529-1538.	2.6	28
131	Mechanistic modeling of biodiesel production using a liquid lipase formulation. Biotechnology Progress, 2014, 30, 1277-1290.	2.6	28
132	Process development for the production of 15β-hydroxycyproterone acetate using Bacillus megaterium expressing CYP106A2 as whole-cell biocatalyst. Microbial Cell Factories, 2015, 14, 28.	4.0	28
133	Systematic Optimization-Based Integrated Chemical Product–Process Design Framework. Industrial & Engineering Chemistry Research, 2018, 57, 677-688.	3.7	28
134	The Effect of Dissolved Oxygen on Kinetics during Continuous Biocatalytic Oxidations. Organic Process Research and Development, 2020, 24, 2055-2063.	2.7	28
135	Process design for the oxidation of fluorobenzene to fluorocatechol by Pseudomonas putida. Journal of Biotechnology, 1997, 58, 167-175.	3.8	27
136	Modelling and optimisation of a transketolase-mediated carbon–carbon bond formation reaction. Chemical Engineering Science, 2007, 62, 3178-3184.	3.8	27
137	Process limitations of a whole-cell P450 catalyzed reaction using a CYP153A-CPR fusion construct expressed in Escherichia coli. Applied Microbiology and Biotechnology, 2016, 100, 1197-1208.	3.6	27
138	Application of multi-parameter flow cytometry using fluorescent probes to study substrate toxicity in the indene bioconversion. Biotechnology and Bioengineering, 2002, 80, 239-249.	3.3	26
139	Comparison of cyclohexanone monooxygenase as an isolated enzyme and whole cell biocatalyst for the enantioselective oxidation of 1,3-dithiane. Journal of Molecular Catalysis B: Enzymatic, 2004, 31, 165-171.	1.8	25
140	Enzymatic isomerization of glucose and xylose in ionic liquids. Catalysis Science and Technology, 2012, 2, 291-295.	4.1	25
141	Computer-aided design of ionic liquids for hybrid process schemes. Computers and Chemical Engineering, 2019, 130, 106556.	3.8	25
142	Boron based separations for in situ recovery of L-erythrulose from transketolase-catalyzed condensation. Biotechnology and Bioengineering, 1997, 56, 345-351.	3.3	24
143	Study of wettability of calcite surfaces using oil–brine–enzyme systems for enhanced oil recovery applications. Journal of Petroleum Science and Engineering, 2015, 127, 53-64.	4.2	24
144	Enzymatically Assisted CO2 Removal from Flue-gas. Energy Procedia, 2014, 63, 624-632.	1.8	23

#	Article	IF	CITATIONS
145	Enzymatic network for production of ether amines from alcohols. Biotechnology and Bioengineering, 2016, 113, 1853-1861.	3.3	23
146	Reaction Engineering for the Industrial Implementation of Biocatalysis. Topics in Catalysis, 2019, 62, 1202-1207.	2.8	23
147	Retro-Techno-Economic Analysis: Using (Bio)Process Systems Engineering Tools To Attain Process Target Values. Industrial & Engineering Chemistry Research, 2016, 55, 9865-9872.	3.7	22
148	A Rapid Selection Procedure for Simple Commercial Implementation of ω-Transaminase Reactions. Organic Process Research and Development, 2016, 20, 602-608.	2.7	22
149	Development of in situ product removal strategies in biocatalysis applying scaledâ€down unit operations. Biotechnology and Bioengineering, 2017, 114, 600-609.	3.3	22
150	Surface modification of polysulfone membranes applied for a membrane reactor with immobilized alcohol dehydrogenase. Materials Today Communications, 2018, 14, 160-168.	1.9	22
151	Bubble Column Enables Higher Reaction Rate for Deracemization of (<i>R,S</i>)â€1â€Phenylethanol with Coupled Alcohol Dehydrogenase/NADH Oxidase System. Advanced Synthesis and Catalysis, 2019, 361, 2574-2581.	4.3	22
152	Combining technology with liquidâ€formulated lipases for inâ€spec biodiesel production. Biotechnology and Applied Biochemistry, 2022, 69, 7-19.	3.1	22
153	A group contribution-based prediction method for the electrical conductivity of ionic liquids. Fluid Phase Equilibria, 2020, 509, 112462.	2.5	22
154	The use of oxygen uptake rate measurements to control the supply of toxic substrate: toluene hydroxylation by Pseudomonas putida UV4. Enzyme and Microbial Technology, 2001, 28, 183-188.	3.2	21
155	Integrated Process Design and Control of Reactive Distillation Processes. IFAC-PapersOnLine, 2015, 48, 1120-1125.	0.9	21
156	Sustainable solutions by integrating process synthesis-intensification. Computers and Chemical Engineering, 2019, 126, 499-519.	3.8	21
157	Process Engineering of Two-Liquid Phase Biocatalysis. Progress in Biotechnology, 1992, 8, 147-154.	0.2	21
158	Membrane Separation for Downstream Processing of Aqueous-Organic Bioconversions. Biotechnology Progress, 1997, 13, 276-283.	2.6	20
159	Measurement of strain-dependent toxicity in the indene bioconversion using multiparameter flow cytometry. Biotechnology and Bioengineering, 2003, 81, 405-420.	3.3	20
160	Economic Considerations for Selecting an Amine Donor in Biocatalytic Transamination. Organic Process Research and Development, 2015, 19, 652-660.	2.7	20
161	Amine donor and acceptor influence on the thermodynamics of ω-transaminase reactions. Tetrahedron: Asymmetry, 2015, 26, 567-570.	1.8	20
162	Effect of Water Clustering on the Activity of Candida antarctica Lipase B in Organic Medium. Catalysts, 2017, 7, 227.	3.5	20

#	Article	IF	CITATIONS
163	Effective removal of antibiotic resistance genes and potential links with archaeal communities during vacuum-type composting and positive-pressure composting. Journal of Environmental Sciences, 2020, 89, 277-286.	6.1	20
164	A useful assay for transketolase in asymmetric syntheses. Biotechnology Letters, 1996, 10, 167-172.	0.5	19
165	Topology optimization for biocatalytic microreactor configurations. Computer Aided Chemical Engineering, 2015, , 1463-1468.	0.5	19
166	Scaleâ€up and intensification of (<i>S</i>)â€lâ€(2â€chlorophenyl)ethanol bioproduction: Economic evaluation of whole cellâ€catalyzed reduction of <i>o</i> à€Chloroacetophenone. Biotechnology and Bioengineering, 2013, 110, 2311-2315.	3.3	18
167	Pilot scale absorption experiments with carbonic anhydrase-enhanced MDEA- Benchmarking with 30 wt% MEA. International Journal of Greenhouse Gas Control, 2019, 82, 69-85.	4.6	18
168	A comparison of pig liver esterase and Bacillus subtilis as catalysts for the hydrolysis of menthyl acetate in stirred two-liquid phase reactors. Enzyme and Microbial Technology, 1990, 12, 260-265.	3.2	17
169	Microreactors and CFD as Tools for Biocatalysis Reactor Design: A case study. Chemical Engineering and Technology, 2013, 36, 1017-1026.	1.5	17
170	Development of continuous pharmaceutical production processes supported by process systems engineering methods and tools. Future Medicinal Chemistry, 2012, 4, 1371-1374.	2.3	16
171	Tools for characterizing the wholeâ€cell bioâ€oxidation of alkanes at microscale. Biotechnology and Bioengineering, 2012, 109, 2179-2189.	3.3	16
172	Reaction Equilibrium of the ω-Transamination of (<i>S</i>)-Phenylethylamine: Experiments and ePC-SAFT Modeling. Organic Process Research and Development, 2017, 21, 976-986.	2.7	16
173	A Practical and Fast Method To Predict the Thermodynamic Preference of ï‰â€Transaminaseâ€Based Transformations. ChemCatChem, 2015, 7, 2594-2597.	3.7	15
174	Thermodynamic Modeling of Multiâ€phase Solid–Liquid Equilibria in Industrialâ€Grade Oils and Fats. JAOCS, Journal of the American Oil Chemists' Society, 2015, 92, 17-28.	1.9	15
175	Scoping Biocatalyst Performance Using Reaction Trajectory Analysis. Organic Process Research and Development, 2018, 22, 1101-1114.	2.7	15
176	Design of enzymatic cascade processes for the production of low-priced chemicals. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2019, 74, 77-84.	1.4	15
177	Controlled pore collapse to increase solute rejection of modified PES membranes. Journal of Membrane Science, 2020, 595, 117515.	8.2	15
178	An Experimental Study on Improved Production Performance by Depressurization Combined with CO ₂ -Enriched Air Injection. Energy & Fuels, 2020, 34, 7329-7339.	5.1	15
179	Advances in biological conversion technologies: new opportunities for reaction engineering. Reaction Chemistry and Engineering, 2020, 5, 632-640.	3.7	15
180	Mass-based biocatalyst metrics to guide protein engineering and bioprocess development. Nature Catalysis, 2022, 5, 2-4.	34.4	15

#	Article	IF	CITATIONS
181	Process Synthesis for Multi-Step Microbial Conversions. Bio/technology, 1995, 13, 1072-1078.	1.5	14
182	Carbon-Carbon Bond Synthesis Annals of the New York Academy of Sciences, 1996, 799, 434-445.	3.8	14
183	Fed-batch bioconversion of indene to cis-indandiol. Enzyme and Microbial Technology, 2002, 31, 954-967.	3.2	14
184	Evaluating the impact of substrate and product concentration on a whole-cell biocatalyst during a Baeyer-Villiger reaction. Biocatalysis and Biotransformation, 2009, 27, 107-117.	2.0	14
185	Kinetics of acetic acid synthesis from ethanol over a Cu/SiO2 catalyst. Applied Catalysis A: General, 2011, 402, 69-79.	4.3	14
186	Systematic substrate adoption methodology (SAM) for future flexible, generic pharmaceutical production processes. Computers and Chemical Engineering, 2013, 58, 344-368.	3.8	14
187	Enzymatic pretreatment of lowâ€grade oils for biodiesel production. Biotechnology and Bioengineering, 2016, 113, 754-760.	3.3	14
188	Shape optimization as a tool to design biocatalytic microreactors. Chemical Engineering Journal, 2017, 322, 215-223.	12.7	14
189	Modelling and simulation of a transketolase mediated reaction: Sensitivity analysis of kinetic parameters. Biochemical Engineering Journal, 2009, 47, 1-9.	3.6	13
190	Experimental and computational evaluation of area selectively immobilized horseradish peroxidase in a microfluidic device. Chemical Engineering Journal, 2018, 332, 16-23.	12.7	13
191	Heterogeneous Catalytic Distillation - A Patent Review. Recent Patents on Chemical Engineering, 2010, 3, 208-229.	0.5	13
192	An efficient approach to bioconversion kinetic model generation based on automated microscale experimentation integrated with model driven experimental design. Chemical Engineering Science, 2009, 64, 403-409.	3.8	12
193	Simple Preparation of Thiol–Ene Particles in Glycerol and Surface Functionalization by Thiol–Ene Chemistry (TEC) and Surface Chain Transfer Free Radical Polymerization (SCTâ€FRP). Macromolecular Rapid Communications, 2018, 39, 1700394.	3.9	12
194	Computer-aided molecular product-process design under property uncertainties – A Monte Carlo based optimization strategy. Computers and Chemical Engineering, 2019, 122, 247-257.	3.8	12
195	Sparged but not stirred: Rapid, ADH-NADH oxidase catalyzed deracemization of alcohols in a bubble column. Chemical Engineering Journal, 2021, 417, 127909.	12.7	12
196	In Situ Product Removal from E. coli Transketolase-catalyzed Biotransformations. Annals of the New York Academy of Sciences, 1996, 799, 545-554.	3.8	11
197	Enhanced recombinant protein synthesis in batch and fedâ€batch <i>Escherichia coli</i> fermentation based on removal of inhibitory acetate by electrodialysis. Journal of Chemical Technology and Biotechnology, 2009, 84, 1284-1291.	3.2	11
198	Application of bipolar electrodialysis to E. coli fermentation for simultaneous acetate removal and pH control. Biotechnology Letters, 2010, 32, 1053-1057.	2.2	11

#	Article	IF	CITATIONS
199	Reaction Engineering of Biocatalytic Enantioselective Reduction: A Case Study for Aliphatic Ketones. Organic Process Research and Development, 2013, 17, 1027-1035.	2.7	11
200	Biocatalytic process development using microfluidic miniaturized systems. Green Processing and Synthesis, 2014, 3, .	3.4	11
201	Ultrasound-assisted production of biodiesel FAME from rapeseed oil in a novel two-compartment reactor. Journal of Chemical Technology and Biotechnology, 2017, 92, 657-665.	3.2	11
202	A Reaction Database for Small Molecule Pharmaceutical Processes Integrated with Process Information. Processes, 2017, 5, 58.	2.8	11
203	Systematic identification method for data analysis and phase equilibria modelling for lipids systems. Journal of Chemical Thermodynamics, 2018, 121, 153-169.	2.0	11
204	Perspective on PSE in pharmaceutical process development and innovation. Computer Aided Chemical Engineering, 2018, , 597-656.	0.5	11
205	A process synthesis-intensification method for generation of novel and intensified solutions. Chemical Engineering and Processing: Process Intensification, 2020, 156, 108103.	3.6	11
206	High-level heterologous expression of active Chaetomium thermophilum FDH in Pichia pastoris. Enzyme and Microbial Technology, 2020, 137, 109552.	3.2	11
207	Confining the motion of enzymes in nanofiltration membrane for efficient and stable removal of micropollutants. Chemical Engineering Journal, 2021, 421, 127870.	12.7	11
208	Modelling study on phase equilibria behavior of ionic liquid-based aqueous biphasic systems. Chemical Engineering Science, 2022, 247, 116904.	3.8	11
209	Directed evolution of a thermostable l-aminoacylase biocatalyst. Journal of Biotechnology, 2011, 155, 396-405.	3.8	10
210	Sustainable Process Synthesis-Intensification. Computer Aided Chemical Engineering, 2014, , 255-260.	0.5	10
211	Process characterization of a monoamine oxidase. Journal of Molecular Catalysis B: Enzymatic, 2014, 106, 124-131.	1.8	10
212	Online Measurement of Oxygenâ€Đependent Enzyme Reaction Kinetics. ChemBioChem, 2018, 19, 106-113.	2.6	10
213	Scoping the Enantioselective Desymmetrization of a Poorly Water-Soluble Diester by Recombinant Pig Liver Esterase. Organic Process Research and Development, 2018, 22, 1518-1523.	2.7	10
214	From molasses to syrup: Engineering ultrafiltration membrane surface to improve invertase reusability. Journal of Membrane Science, 2020, 610, 118287.	8.2	10
215	Ionic-Liquid-Based Bioisoprene Recovery Process Design. Industrial & Engineering Chemistry Research, 2020, 59, 7355-7366.	3.7	10
216	Ionic liquidâ€based in situ product removal design exemplified for an acetone–butanol–ethanol fermentation. Biotechnology Progress, 2021, 37, e3183.	2.6	10

#	Article	IF	CITATIONS
217	Title is missing!. Biotechnology Letters, 2001, 23, 385-388.	2.2	9
218	Model visualization for evaluation of biocatalytic processes. Food and Bioproducts Processing, 2008, 86, 96-103.	3.6	9
219	Process modelling and simulation of a transketolase mediated reaction: Analysis of alternative modes of operation. Biochemical Engineering Journal, 2009, 47, 10-18.	3.6	9
220	Introducing mechanistic models in Process Analytical Technology education. Biotechnology Journal, 2009, 4, 593-599.	3.5	9
221	An Integrated Methodology for Design of Tailor-Made Blended Products. Computer Aided Chemical Engineering, 2012, , 752-756.	0.5	9
222	A microfluidic toolbox for the development of in-situ product removal strategies in biocatalysis. Journal of Flow Chemistry, 2016, 6, 18-26.	1.9	9
223	Development of a thiolâ€ene based screening platform for enzyme immobilization demonstrated using horseradish peroxidase. Biotechnology Progress, 2017, 33, 1267-1277.	2.6	9
224	Improved Alkyl Glycoside Synthesis by transâ€Glycosylation through Tailored Microenvironments of Immobilized βâ€Glucosidase. ChemPlusChem, 2020, 85, 137-141.	2.8	9
225	A retrofit strategy to achieve "Fast, Flexible, Future (F3)―pharmaceutical production processes. Computer Aided Chemical Engineering, 2011, 29, 291-295.	0.5	9
226	Controlled-release biocatalysis for the synthesis of D-phenylglycine. Biocatalysis and Biotransformation, 2004, 22, 195-201.	2.0	8
227	The effect of cultivation media and washing whole-cell biocatalysts on monoamine oxidase catalyzed oxidative desymmetrization of 3-azabicyclo[3,3,0]octane. Enzyme and Microbial Technology, 2016, 83, 7-13.	3.2	8
228	Process Analysis of Shea Butter Solvent Fractionation Using a Generic Systematic Approach. Industrial & Engineering Chemistry Research, 2020, 59, 9152-9164.	3.7	8
229	Ensuring the Sustainability of Biocatalysis. ChemSusChem, 2022, 15, .	6.8	8
230	The Virtual Product-Process Design Laboratory for Structured Chemical Product Design and Analysis. Computer Aided Chemical Engineering, 2014, , 61-66.	0.5	7
231	Integrated Ionic Liquid and Process Design involving Hybrid Separation Schemes. Computer Aided Chemical Engineering, 2018, 44, 1045-1050.	0.5	7
232	Use of image analysis to understand enzyme stability in an aerated stirred reactor. Biotechnology Progress, 2019, 35, e2878.	2.6	7
233	Uncertainty in the prediction of the thermophysical behavior of new halogenated working fluids. Fluid Phase Equilibria, 2019, 485, 220-233.	2.5	7
234	Near-IR Spectroscopic Monitoring of Analytes during Microbially Catalysed Baeyerâ^'Villiger Bioconversions. Organic Process Research and Development, 2002, 6, 569-576.	2.7	6

#	Article	IF	CITATIONS
235	Wavelet shrinkage data processing for neural networks in bioprocess modeling. Computers and Chemical Engineering, 2002, 26, 1611-1620.	3.8	6
236	Design of an Optimal Biorefinery. Computer Aided Chemical Engineering, 2011, , 371-376.	0.5	6
237	Design of Sustainable Blended Products using an Integrated Methodology. Computer Aided Chemical Engineering, 2013, , 835-840.	0.5	6
238	Oxygen transfer rates and requirements in oxidative biocatalysis. Computer Aided Chemical Engineering, 2015, 37, 2111-2116.	0.5	6
239	Model-based design and analysis of glucose isomerization process operation. Computers and Chemical Engineering, 2017, 98, 128-142.	3.8	6
240	Rate-based Modelling and Validation of a Pilot Absorber Using MDEA Enhanced with Carbonic Anhydrase (CA). Energy Procedia, 2017, 114, 707-718.	1.8	6
241	Design and Simulation of Rate-based CO2 Capture Processes Using Carbonic Anhydrase (CA) Applied to Biogas. Energy Procedia, 2017, 114, 1434-1443.	1.8	6
242	Pilot Absorption Experiments with Carbonic Anhydrase Enhanced MDEA. Energy Procedia, 2017, 114, 1158-1165.	1.8	6
243	Application of a computer-aided framework for the design of CO 2 capture and utilization processes. Computer Aided Chemical Engineering, 2017, 40, 2653-2658.	0.5	6
244	One-Pot Synthesis and the Integration of Chemical and Biocatalytic Conversions. , 2005, , 419-428.		6
245	Bio-Based Epoxy Binders from Lignin Derivatized with Epoxidized Rapeseed Fatty Acids in Bimodal Coating Systems. ACS Applied Polymer Materials, 2022, 4, 444-451.	4.4	6
246	Carbon-Carbon Bond Synthesis Annals of the New York Academy of Sciences, 1996, 799, 729-736.	3.8	5
247	Induction studies with Escherichia coli expressing recombinant interleukin-13 using multi-parameter flow cytometry. Biotechnology Letters, 2009, 31, 577-584.	2.2	5
248	Kinetic modeling of multi-component crystallization of industrial-grade oils and fats. European Journal of Lipid Science and Technology, 2015, 117, 1066-1078.	1.5	5
249	Realâ€ŧime model based process monitoring of enzymatic biodiesel production. Biotechnology Progress, 2015, 31, 585-595.	2.6	5
250	Automated Determination of Oxygen-Dependent Enzyme Kinetics in a Tube-in-Tube Flow Reactor. ChemCatChem, 2017, 9, 3273-3273.	3.7	5
251	Monolithic flow reactor for enzymatic oxidations. Journal of Chemical Technology and Biotechnology, 2021, 96, 2488-2495.	3.2	5
252	Phenomena-based Process Synthesis and Design to achieve Process Intensification. Computer Aided Chemical Engineering, 2011, 29, 221-225.	0.5	5

#	Article	IF	CITATIONS
253	Regiospecific naphthalene monohydroxylation by a recombinant yeast producing a P4501A1–yeast reductase fused enzyme. Enzyme and Microbial Technology, 2003, 33, 606-611.	3.2	4
254	A systematic synthesis and design methodology to achieve process intensification in (bio) chemical processes. Computer Aided Chemical Engineering, 2010, , 241-246.	0.5	4
255	Operating Considerations of Ultrafiltration in Enzyme Enhanced Carbon Capture. Energy Procedia, 2017, 114, 735-743.	1.8	4
256	A Multi-stage and Multi-level Computer Aided Framework for Sustainable Process Intensification. Computer Aided Chemical Engineering, 2018, , 875-880.	0.5	4
257	Integrating protein engineering into biocatalytic process scale-up. Trends in Chemistry, 2022, 4, 371-373.	8.5	4
258	Modeling and Experimental Validation of Continuous Biocatalytic Oxidation in Two Continuous Stirred Tank Reactors in Series. Organic Process Research and Development, 2022, 26, 2030-2037.	2.7	4
259	<i>In Situ</i> Cofactor Regeneration Using NAD(P)H Oxidase: Enzyme Stability in a Bubble Column. ChemCatChem, 2022, 14, .	3.7	4
260	Choice of microbial host for the naphthalene dioxygenase bioconversion. Journal of Industrial Microbiology, 1996, 16, 274-279.	0.9	3
261	Modelling of the Baeyer-Villiger Monooxygenase Catalysed Synthesis of Optically Pure Lactones. Food and Bioproducts Processing, 2002, 80, 51-55.	3.6	3
262	CAPE methods and tools for systematic analysis of new chemical product design and development. Computer Aided Chemical Engineering, 2008, , 997-1002.	0.5	3
263	Synthesis, Design and Analysis of Downstream Separation in Bio-refinery Processes through a Group-Contribution Approach. Computer Aided Chemical Engineering, 2010, 28, 1147-1152.	0.5	3
264	Application of Uncertainty and Sensitivity Analysis to a Kinetic Model for Enzymatic Biodiesel Production. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 149-156.	0.4	3
265	reSystematic Development of Miniaturized (Bio)Processes using Process Systems Engineering (PSE) Methods and Tools. Chemical and Biochemical Engineering Quarterly, 2014, 28, 203-214.	0.9	3
266	Fed-Batch Feeding Strategies for Enzymatic Biodiesel Production. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 6204-6209.	0.4	3
267	From Fed-batch to Continuous Enzymatic Biodiesel Production. Computer Aided Chemical Engineering, 2015, , 1337-1342.	0.5	3
268	Comparison of the Kinetic Promoter Piperazine and Carbonic Anhydrase for CO2 Absorption. Energy Procedia, 2017, 114, 719-725.	1.8	3
269	Integrated Solvent-Membrane and Process Design Method for Hybrid Reaction-Separation Schemes. Computer Aided Chemical Engineering, 2018, 43, 851-856.	0.5	3
270	Innovative process development and production concepts for small-molecule API manufacturing. Computer Aided Chemical Engineering, 2018, , 67-84.	0.5	3

#	Article	IF	CITATIONS
271	Achieving More Sustainable Designs through a Process Synthesis-Intensification Framework. Computer Aided Chemical Engineering, 2014, , 31-36.	0.5	3
272	Biocatalysis for future sustainable manufacturing. Biochemist, 2022, 44, 6-8.	0.5	3
273	Computer-Aided Multifunctional Ionic Liquid Design for the Electrolyte in LTO Rechargeable Batteries. Journal of Physical Chemistry C, 2022, 126, 11498-11509.	3.1	3
274	Application of FSQ Spectrophotometric Multicomponent Analysis to Bioconversion Monitoring. Biotechnology Progress, 1997, 13, 715-721.	2.6	2
275	Advances in Enzyme Technology — UK Contributions. Advances in Biochemical Engineering/Biotechnology, 2000, 70, 93-108.	1.1	2
276	New Opportunities for Process Systems Engineering in Industrial Biotechnology. Computer Aided Chemical Engineering, 2009, 27, 157-162.	0.5	2
277	Design of tailor-made chemical blend using a decomposition-based computer-aided approach. , 2011, , .		2
278	A generic process template for continuous pharmaceutical production. Computer Aided Chemical Engineering, 2012, , 715-719.	0.5	2
279	Process Alternatives for Second Generation Ethanol Production from Sugarcane Bagasse. Computer Aided Chemical Engineering, 2015, , 1349-1354.	0.5	2
280	Synthesis of Sustainable Biofuel ProductionÂProcesses: A Generic Methodology for Superstructure Optimization and Data Management. , 2017, , 651-681.		2
281	Integrated computer-aided framework for chemical product and process application design and optimization for waste heat recovery. Computer Aided Chemical Engineering, 2017, , 1777-1782.	0.5	2
282	Computational chemical product design problems under property uncertainties. Computer Aided Chemical Engineering, 2017, , 973-978.	0.5	2
283	On the thermodynamics of biocatalytic reactions with application of group-contribution correlation and prediction. Fluid Phase Equilibria, 2020, 518, 112623.	2.5	2
284	Enzyme Cascade Process Design and Modelling. , 2021, , 125-139.		2
285	Phenomena-based Process Synthesis and Design to achieve Process Intensification. Computer Aided Chemical Engineering, 2012, , 1697-1701.	0.5	2
286	New Horizons for Biocatalytic Science. Frontiers in Catalysis, 2022, 2, .	3.9	2
287	Process Effects of By-Product Carbon Dioxide Production from Transketolase-Catalysed Condensations. Biocatalysis and Biotransformation, 1999, 16, 427-441.	2.0	1
288	PSE in Pharmaceutical Process Development. Computer Aided Chemical Engineering, 2011, , 1628-1632.	0.5	1

#	Article	IF	CITATIONS
289	PSE opportunities in biocatalytic process design and development. Computer Aided Chemical Engineering, 2012, 31, 875-879.	0.5	1
290	Model-Based Analysis and Efficient Operation of a Glucose Isomerization Reactor Plant. Computer Aided Chemical Engineering, 2015, 37, 563-568.	0.5	1
291	Separation and recovery of intracellular beta-carotene using a process synthesis framework. Computer Aided Chemical Engineering, 2017, 40, 2851-2856.	0.5	1
292	Design and Analysis of Edible Oil Processes Containing Lipids. Computer Aided Chemical Engineering, 2018, 43, 737-742.	0.5	1
293	Process model validation and analysis for intensification of an industrial scale process. Computer Aided Chemical Engineering, 2019, , 955-960.	0.5	1
294	High-yield production of active recombinant S. simulans lysostaphin expressed in E. coli in a laboratory bioreactor. Protein Expression and Purification, 2021, 177, 105753.	1.3	1
295	Boron based separations for in situ recovery of L-erythrulose from transketolase-catalyzed condensation. , 1997, 56, 345.		1
296	UCL biochemical engineering. , 1998, 60, 527-533.		0
297	Accelerating biocatalytic process design: Integrating new tools from biology, chemistry and engineering. Journal of Biotechnology, 2007, 131, S78.	3.8	0
298	In Focus: Biocatalysis Editorial. Journal of Chemical Technology and Biotechnology, 2007, 82, 1053-1054.	3.2	0
299	A Model-Based Methodology for Simultaneous Design and Control of a Bioethanol Production Process. Computer Aided Chemical Engineering, 2009, 27, 237-242.	0.5	0
300	Methodological Approach for Modeling of Multienzyme in-pot Processes. Computer Aided Chemical Engineering, 2011, 29, 1346-1350.	0.5	0
301	Thermodynamic Calculations for Systems Biocatalysis. Computer Aided Chemical Engineering, 2015, 37, 233-238.	0.5	0
302	Location-dependent optimal biorefinery synthesis. Computer Aided Chemical Engineering, 2017, , 907-912.	0.5	0
303	Computer Aided Synthesis of Innovative Processes: Renewable Adipic Acid Production. Computer Aided Chemical Engineering, 2017, 40, 709-714.	0.5	0
304	A Systematic Identification Method for Thermodynamic Property Modelling. Computer Aided Chemical Engineering, 2017, 40, 205-210.	0.5	0
305	Sustainable and Innovative Solutions through an Integrated Systematic Framework. Computer Aided Chemical Engineering, 2018, , 1165-1170.	0.5	0
306	Fermentative Alcohol Production. Green Energy and Technology, 2018, , 319-357.	0.6	0

#	Article	IF	CITATIONS
307	8. Conception, design, and development of intensified hybrid-bioprocesses. , 2019, , 211-241.		0
308	Editorial: "How chemistry flows― Current Opinion in Green and Sustainable Chemistry, 2020, 25, 100389.	5.9	0
309	Local Organizing Committee (Technical University of Denmark, Denmark). Computer Aided Chemical Engineering, 2015, 37, xxv.	0.5	0