
Alice Y Cheung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6210936/publications.pdf Version: 2024-02-01

ALLCE Y CHELINC

#	Article	IF	CITATIONS
1	A rich and bountiful harvest: Key discoveries in plant cell biology. Plant Cell, 2022, 34, 53-71.	6.6	7
2	RALF peptide signaling controls the polytubey block in <i>Arabidopsis</i> . Science, 2022, 375, 290-296.	12.6	65
3	Auxin efflux controls orderly nucellar degeneration and expansion of the female gametophyte in Arabidopsis. New Phytologist, 2021, 230, 2261-2274.	7.3	21
4	Pollen PCP-B peptides unlock a stigma peptide–receptor kinase gating mechanism for pollination. Science, 2021, 372, 171-175.	12.6	113
5	FERONIA receptor kinase-regulated reactive oxygen species mediate self-incompatibility in Brassica rapa. Current Biology, 2021, 31, 3004-3016.e4.	3.9	63
6	Malectin/Malectin-like domain-containing proteins: A repertoire of cell surface molecules with broad functional potential. Cell Surface, 2021, 7, 100056.	3.0	23
7	Programmed Cell Death in Stigmatic Papilla Cells Is Associated With Senescence-Induced Self-Incompatibility Breakdown in Chinese Cabbage and Radish. Frontiers in Plant Science, 2020, 11, 586901.	3.6	6
8	FERONIA controls pectin- and nitric oxide-mediated male–female interaction. Nature, 2020, 579, 561-566.	27.8	137
9	Autophagy-mediated compartmental cytoplasmic deletion is essential for tobacco pollen germination and male fertility. Autophagy, 2020, 16, 2180-2192.	9.1	35
10	Update on Receptors and Signaling. Plant Physiology, 2020, 182, 1527-1530.	4.8	20
11	LLG2/3 Are Co-receptors in BUPS/ANX-RALF Signaling to Regulate Arabidopsis Pollen Tube Integrity. Current Biology, 2019, 29, 3256-3265.e5.	3.9	87
12	An atypical aspartic protease modulates lateral root development in Arabidopsis thaliana. Journal of Experimental Botany, 2019, 70, 2157-2171.	4.8	24
13	Plant Biology: To Live, or Not to Live, That Is the Question. Current Biology, 2019, 29, R1186-R1189.	3.9	3
14	Pollen tube integrity regulation in flowering plants: insights from molecular assemblies on the pollen tube surface. New Phytologist, 2019, 222, 687-693.	7.3	57
15	The FERONIA Receptor Kinase Maintains Cell-Wall Integrity during Salt Stress through Ca2+ Signaling. Current Biology, 2018, 28, 666-675.e5.	3.9	526
16	Contextâ€specific dependence on <scp>FERONIA</scp> kinase activity. FEBS Letters, 2018, 592, 2392-2394.	2.8	6
17	Focus on Flowering and Reproduction. Plant Physiology, 2017, 173, 1-4.	4.8	15
18	SIPP, a Novel Mitochondrial Phosphate Carrier, Mediates in Self-Incompatibility. Plant Physiology, 2017, 175, 1105-1120.	4.8	19

#	Article	IF	CITATIONS
19	<i>Arabidopsis</i> pollen tube integrity and sperm release are regulated by RALF-mediated signaling. Science, 2017, 358, 1596-1600.	12.6	324
20	RopGEF1 Plays a Critical Role in Polar Auxin Transport in Early Development. Plant Physiology, 2017, 175, 157-171.	4.8	25
21	Transporters involved in pH and K+ homeostasis affect pollen wall formation, male fertility, and embryo development. Journal of Experimental Botany, 2017, 68, 3165-3178.	4.8	24
22	FERONIA and Her Pals: Functions and Mechanisms. Plant Physiology, 2016, 171, 2379-2392.	4.8	158
23	LURE is bait for multiple receptors. Nature, 2016, 531, 178-180.	27.8	18
24	Glycosylphosphatidylinositol-anchored proteins as chaperones and co-receptors for FERONIA receptor kinase signaling in Arabidopsis. ELife, 2015, 4, .	6.0	240
25	Hyper, a Hydrogen Peroxide Sensor, Indicates the Sensitivity of the Arabidopsis Root Elongation Zone to Aluminum Treatment. Sensors, 2015, 15, 855-867.	3.8	52
26	Stomatal Patterning: SERKs Put the Mouths in Their Right Place. Current Biology, 2015, 25, R838-R840.	3.9	12
27	Glycosylphosphatidylinositol Anchoring: Control through Modification. Plant Physiology, 2014, 166, 748-750.	4.8	20
28	Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis. Nature Communications, 2014, 5, 3129.	12.8	291
29	ROP3 GTPase Contributes to Polar Auxin Transport and Auxin Responses and Is Important for Embryogenesis and Seedling Growth in <i>Arabidopsis</i> ÂÂ. Plant Cell, 2014, 26, 3501-3518.	6.6	46
30	Apical <scp>F</scp> â€actinâ€regulated exocytic targeting of <scp>N</scp> t <scp>PPME</scp> 1 is essential for construction and rigidity of the pollen tube cell wall. Plant Journal, 2013, 76, 367-379.	5.7	50
31	Using Hyper as a Molecular Probe to Visualize Hydrogen Peroxide in Living Plant Cells. Methods in Enzymology, 2013, 527, 275-290.	1.0	30
32	The Arabidopsis small GTPase AtRAC7/ROP9 is a modulator of auxin and abscisic acid signalling. Journal of Experimental Botany, 2013, 64, 3425-3437.	4.8	26
33	Pollen Germination Activates the Apical Membrane-Located RAC/ROP GTPase Switch. Molecular Plant, 2013, 6, 1358-1361.	8.3	12
34	Nuclear Architecture and Dynamics: Territories, Nuclear Bodies, and Nucleocytoplasmic Trafficking. Plant Physiology, 2012, 158, 23-25.	4.8	7
35	FERONIA receptor kinase pathway suppresses abscisic acid signaling in <i>Arabidopsis</i> by activating ABI2 phosphatase. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14693-14698.	7.1	220
36	Receptor-like kinases as surface regulators for RAC/ROP-mediated pollen tube growth and interaction with the pistil. AoB PLANTS, 2011, 2011, plr017.	2.3	24

#	Article	IF	CITATIONS
37	Plant reproduction: does size matter?. New Phytologist, 2011, 190, 812-815.	7.3	0
38	THESEUS 1, FERONIA and relatives: a family of cell wall-sensing receptor kinases?. Current Opinion in Plant Biology, 2011, 14, 632-641.	7.1	142
39	New insights into the functional roles of CrRLKs in the control of plant cell growth and development. Plant Signaling and Behavior, 2011, 6, 655-659.	2.4	51
40	<i>RopGEF7</i> Regulates PLETHORA-Dependent Maintenance of the Root Stem Cell Niche in <i>Arabidopsis</i> Â Â Â. Plant Cell, 2011, 23, 2880-2894.	6.6	55
41	RAC/ROP GTPases and Auxin Signaling. Plant Cell, 2011, 23, 1208-1218.	6.6	98
42	Pollen Tubes Lacking a Pair of K+ Transporters Fail to Target Ovules in <i>Arabidopsis</i> Â Â Â. Plant Cell, 2011, 23, 81-93.	6.6	148
43	Arabidopsis and Tobacco SUPERMAN regulate hormone signalling and mediate cell proliferation and differentiation. Journal of Experimental Botany, 2011, 62, 949-961.	4.8	54
44	FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development. Proceedings of the United States of America, 2010, 107, 17821-17826.	7.1	540
45	A transmembrane formin nucleates subapical actin assembly and controls tip-focused growth in pollen tubes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16390-16395.	7.1	133
46	The pollen tube journey in the pistil and imaging the in vivo process by two-photon microscopy. Journal of Experimental Botany, 2010, 61, 1907-1915.	4.8	76
47	RAC/ROP GTPases in the Regulation of Polarity and Polar Cell Growth. Signaling and Communication in Plants, 2010, , 105-122.	0.7	1
48	Structural and Signaling Networks for the Polar Cell Growth Machinery in Pollen Tubes. Annual Review of Plant Biology, 2008, 59, 547-572.	18.7	353
49	Exclusion of a Proton ATPase from the Apical Membrane Is Associated with Cell Polarity and Tip Growth in <i>Nicotiana tabacum</i> Pollen Tubes. Plant Cell, 2008, 20, 614-634.	6.6	121
50	The Dynamic Pollen Tube Cytoskeleton: Live Cell Studies Using Actin-Binding and Microtubule-Binding Reporter Proteins. Molecular Plant, 2008, 1, 686-702.	8.3	100
51	The Regulatory RAB and ARF GTPases for Vesicular Trafficking Â. Plant Physiology, 2008, 147, 1516-1526.	4.8	170
52	Membrane Trafficking: Intracellular Highways and Country Roads. Plant Physiology, 2008, 147, 1451-1453.	4.8	21
53	RAC/ROP GTPases: â€~hubs' for signal integration and diversification in plants. Trends in Plant Science, 2006, 11, 309-315.	8.8	196
54	Structural and functional compartmentalization in pollen tubes. Journal of Experimental Botany, 2006, 58, 75-82.	4.8	66

#	Article	IF	CITATIONS
55	Cell Death in Plant Development and Defense. , 2005, , 99-121.		2
56	Rab11 GTPase-Regulated Membrane Trafficking Is Crucial for Tip-Focused Pollen Tube Growth in Tobacco. Plant Cell, 2005, 17, 2564-2579.	6.6	174
57	RAC GTPases in Tobacco and Arabidopsis Mediate Auxin-Induced Formation of Proteolytically Active Nuclear Protein Bodies That Contain AUX/IAA Proteins. Plant Cell, 2005, 17, 2369-2383.	6.6	90
58	Pectin Methylesterase, a Regulator of Pollen Tube Growth. Plant Physiology, 2005, 138, 1334-1346.	4.8	324
59	Overexpression of an Arabidopsis Formin Stimulates Supernumerary Actin Cable Formation from Pollen Tube Cell Membrane[W]. Plant Cell, 2004, 16, 257-269.	6.6	204
60	Regulation of pollen tube growth by Rac-like GTPases. Journal of Experimental Botany, 2003, 54, 73-81.	4.8	72
61	Actin-Depolymerizing Factor Mediates Rac/Rop GTPase–Regulated Pollen Tube Growth. Plant Cell, 2003, 15, 237-249.	6.6	164
62	The Regulation of Actin Organization by Actin-Depolymerizing Factor in Elongating Pollen Tubes[W]. Plant Cell, 2002, 14, 2175-2190.	6.6	230
63	Plant Rac-Like GTPases Are Activated by Auxin and Mediate Auxin-Responsive Gene Expression. Plant Cell, 2002, 14, 2745-2760.	6.6	182
64	Rab2 GTPase Regulates Vesicle Trafficking between the Endoplasmic Reticulum and the Golgi Bodies and Is Important to Pollen Tube Growth[W]. Plant Cell, 2002, 14, 945-962.	6.6	178
65	Polarized Cell Growth in Higher Plants. Annual Review of Cell and Developmental Biology, 2001, 17, 159-187.	9.4	670
66	Imaging elongating pollen tubes by green fluorescent protein. Sexual Plant Reproduction, 2001, 14, 9-14.	2.2	19
67	PLANT BIOLOGY: Pollen Tube GuidanceRight on Target. Science, 2001, 293, 1441-1442.	12.6	57
68	A pollen tube growth-promoting arabinogalactan protein from Nicotiana alata is similar to the tobacco TTS protein. Plant Journal, 2000, 22, 165-176.	5.7	155
69	Programmed cell death in plant reproduction. Plant Molecular Biology, 2000, 44, 267-281.	3.9	248
70	Programmed cell death in plant reproduction. , 2000, , 23-37.		7
71	Transcriptional, Post-Transcriptional and Post-Translational Regulation of a Nicotiana Stylar Transmitting Tissue-Specific Arabinogalactan-Protein. , 2000, , 133-148.		7
72	The pollen tupe growth pathway: its molecular and biochemical contributions and responses to pollination. Sexual Plant Reproduction, 1996, 9, 330-336.	2.2	48

#	Article	IF	CITATIONS
73	Nuclear male sterility induced by pollen-specific expression of a ribonuclease. Sexual Plant Reproduction, 1996, 9, 35.	2.2	24
74	Pollen—pistil interactions during pollen-tube growth. Trends in Plant Science, 1996, 1, 45-51.	8.8	97
75	Genes encoding cell wall proteins. Plant Molecular Biology Reporter, 1996, 14, 9-10.	1.8	1
76	Pollination induces mRNA poly(A) tail-shortening and cell deterioration in flower transmitting tissue. Plant Journal, 1996, 9, 715-727.	5.7	97
77	The pollen tupe growth pathway: its molecular and biochemical contributions and responses to pollination. Sexual Plant Reproduction, 1996, 9, 330-336.	2.2	5
78	A floral transmitting tissue-specific glycoprotein attracts pollen tubes and stimulates their growth. Cell, 1995, 82, 383-393.	28.9	437
79	A pollen tube growth stimulatory glycoprotein is deglycosylated by pollen tubes and displays a glycosylation gradient in the flower. Cell, 1995, 82, 395-403.	28.9	246
80	Characterization of a rice pollenâ€specific gene and its expression. American Journal of Botany, 1994, 81, 552-561.	1.7	21
81	Characterization of a Rice Pollen-Specific Gene and Its Expression. American Journal of Botany, 1994, 81, 552.	1.7	22
82	Characterization of cDNAs for stylar transmitting tissue-specific proline-rich proteins in tobacco. Plant Journal, 1993, 3, 151-160.	5.7	58
83	Promiscuous Germination and Growth of Wildtype Pollen from Arabidopsis and Related Species on the Arabidopsis Mutant, fiddlehead. Developmental Biology, 1993, 155, 250-258.	2.0	77
84	Development and Pollination Regulated Accumulation and Glycosylation of a Stylar Transmitting Tissue-Specific Proline-Rich Protein. Plant Cell, 1993, 5, 1639.	6.6	11
85	Fiddlehead: An Arabidopsis mutant constitutively expressing an organ fusion program that involves interactions between epidermal cells. Developmental Biology, 1992, 152, 383-392.	2.0	112
86	A flower-specific cDNA encoding a novel thionin in tobacco. Molecular Genetics and Genomics, 1992, 234, 89-96.	2.4	94