Neil Audsley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6210852/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>In silico</i> identification of neurohormones and neuropeptides and their G protein-coupled receptors in the sheep scab mite <i>Psoroptes ovis</i> strategies. International Journal of Acarology, 2022, 48, 300-323.	0.7	0
2	Mass spectrometric characterisation of the major peptides of the male ejaculatory duct, including a glycopeptide with an unusual zwitterionic glycosylation. Journal of Proteomics, 2021, 246, 104307.	2.4	0
3	The structure of the Drosophila melanogaster sex peptide: Identification of hydroxylated isoleucine and a strain variation in the pattern of amino acid hydroxylation. Insect Biochemistry and Molecular Biology, 2020, 124, 103414.	2.7	3
4	role for myosuppressin. General and Comparative Endocrinology, 2019, 278, 50-57.	1.8	1
5	Evaluation of Chemical Strategies for Improving the Stability and Oral Toxicity of Insecticidal Peptides. Biomedicines, 2018, 6, 90.	3.2	7
6	Functional Characterization and Signaling Systems of Corazonin and Red Pigment Concentrating Hormone in the Green Shore Crab, Carcinus maenas. Frontiers in Neuroscience, 2017, 11, 752.	2.8	53
7	Peptidergic control in a fruit crop pest: The spotted-wing drosophila, Drosophila suzukii. PLoS ONE, 2017, 12, e0188021.	2.5	9
8	Further Screening of Entomopathogenic Fungi and Nematodes as Control Agents for Drosophila suzukii. Insects, 2016, 7, 24.	2.2	59
9	The potential use of allicin as a biopesticide for the control of the house fly, <i>Musca domestica</i> L. International Journal of Pest Management, 2016, 62, 111-118.	1.8	6
10	G protein coupled receptors as targets for next generation pesticides. Insect Biochemistry and Molecular Biology, 2015, 67, 27-37.	2.7	176
11	The sexual dimorphic behaviour of adult <i>Drosophila suzukii</i> : elevated female locomotor activity and loss of siesta is a post-mating response. Journal of Experimental Biology, 2015, 218, 3855-61.	1.7	38
12	Genomic and peptidomic analyses of the neuropeptides from the emerging pest, Drosophila suzukii. Peptides, 2015, 68, 33-42.	2.4	23
13	Preliminary Screening of Potential Control Products against Drosophila suzukii. Insects, 2014, 5, 488-498.	2.2	58
14	Efficacy of Commercially Available Invertebrate Predators against Drosophila suzukii. Insects, 2014, 5, 952-960.	2.2	39
15	The degradome and the evolution of Drosophila sex peptide as a ligand for the MIP receptor. Peptides, 2014, 53, 258-264.	2.4	7
16	Signal transduction for Schistocerca gregaria ion transport peptide is mediated via both cyclic AMP and cyclic GMP. Peptides, 2013, 41, 74-80.	2.4	19
17	Identification and localisation of selected myotropic neuropeptides in the ventral nerve cord of tenebrionid beetles. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2013, 166, 44-51.	1.8	11
18	Characterisation and tissue distribution of the PISCF allatostatin receptor in the red flour beetle, Tribolium castaneum. Insect Biochemistry and Molecular Biology, 2013, 43, 65-74.	2.7	35

NEIL AUDSLEY

#	Article	IF	CITATIONS
19	The host-seeking inhibitory peptide, Aea-HP-1, is made in the male accessory gland and transferred to the female during copulation. Peptides, 2012, 34, 150-157.	2.4	27
20	Adipokinetic hormones (AKHs) of sphingid Lepidoptera, including the identification of a second M. sexta AKH. Peptides, 2012, 34, 44-50.	2.4	19
21	New myotropic and metabotropic actions of pyrokinins in tenebrionid beetles. General and Comparative Endocrinology, 2012, 177, 263-269.	1.8	14
22	Neuropeptides associated with the central nervous system of the cabbage root fly, Delia radicum (L). Peptides, 2011, 32, 434-440.	2.4	23
23	Oral activity of FMRFamide-related peptides on the pea aphid Acyrthosiphon pisum (Hemiptera:) Tj ETQq1 1 0.784	1.9 rgBT	/Qverlock
24	Effects of <i>Manduca sexta</i> allatostatin and an analogue on the peachâ€potato aphid <i>Myzus persicae</i> (hemiptera: aphididae) and degradation by enzymes in the aphid gut. Archives of Insect Biochemistry and Physiology, 2010, 75, 139-157.	1.5	18
25	MIPs are ancestral ligands for the sex peptide receptor. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6520-6525.	7.1	147
26	Identification of Myotropic Neuropeptides from the Brain and Corpus Cardiacum-Corpus Allatum Complex of the Beetle, <i>Zophobas atratus</i> . Journal of Insect Science, 2010, 10, 1-19.	1.5	16
27	Effects of Manduca sexta allatostatin and an analog on the pea aphid Acyrthosiphon pisum (Hemiptera:) Tj ETQq1	1 0.7843 2.4	14.rgBT /0 22
28	MALDI-TOF Mass Spectrometry Approaches to the Characterisation of Insect Neuropeptides. Methods in Molecular Biology, 2010, 615, 101-115.	0.9	1
29	Method to screen for the addition of porcine bloodâ€based binding products to foods using liquid chromatography/triple quadrupole mass spectrometry. Rapid Communications in Mass Spectrometry, 2008, 22, 2006-2008.	1.5	21
30	The insecticidal activity of recombinant garlic lectins towards aphids. Insect Biochemistry and Molecular Biology, 2008, 38, 905-915.	2.7	51
31	Transepithelial flux of an allatostatin and analogs across the anterior midgut of Manduca sexta larvae in vitro. Peptides, 2008, 29, 286-294.	2.4	12
32	Neuropeptides of the beetle, Tenebrio molitor identified using MALDI-TOF mass spectrometry and deduced sequences from the Tribolium castaneum genome. Peptides, 2008, 29, 168-178.	2.4	83
33	Predicted versus expressed adipokinetic hormones, and other small peptides from the corpus cardiacum–corpus allatum: A case study with beetles and moths. Peptides, 2008, 29, 1124-1139.	2.4	38
34	Metabolic inactivation of the circadian transmitter, pigment dispersing factor (PDF), by neprilysin-like peptidases in Drosophila. Journal of Experimental Biology, 2007, 210, 4465-4470.	1.7	24
35	Expression of NEP2, a soluble neprilysin-like endopeptidase, during embryogenesis in Drosophila melanogaster. Peptides, 2007, 28, 127-135.	2.4	18
36	In vitro transport of an allatostatin across the foregut of Manduca sexta larvae and metabolism by the gut and hemolymph. Peptides, 2007, 28, 136-145.	2.4	10

NEIL AUDSLEY

#	Article	IF	CITATIONS
37	Screening method for the addition of bovine bloodâ€based binding agents to food using liquid chromatography triple quadrupole mass spectrometry. Rapid Communications in Mass Spectrometry, 2007, 21, 2919-2925.	1.5	28
38	Metabolism of cydiastatin 4 and analogues by enzymes associated with the midgut and haemolymph of Manduca sexta larvae. General and Comparative Endocrinology, 2007, 153, 80-87.	1.8	6
39	Proteomic identification of Drosophila melanogaster male accessory gland proteins, including a pro-cathepsin and a soluble gamma-glutamyl transpeptidase. Proteome Science, 2006, 4, 9.	1.7	73
40	Analysis of peptides in the brain and corpora cardiaca–corpora allata of the honey bee, Apis mellifera using MALDI-TOF mass spectrometry. Peptides, 2006, 27, 512-520.	2.4	59
41	The ectoparasitic wasp Eulophus pennicornis (Hymenoptera: Eulophidae) uses instar-specific endocrine disruption strategies to suppress the development of its host Lacanobia oleracea (Lepidoptera: Noctuidae). Journal of Insect Physiology, 2006, 52, 1153-1162.	2.0	24
42	Neuropeptides associated with the frontal ganglion of larval Lepidoptera. Peptides, 2005, 26, 11-21.	2.4	31
43	Endopeptidase activity of larvalLacanobia oleracea corpus allatum: Metabolism ofManduca sexta allatostatin and allatotropin. Archives of Insect Biochemistry and Physiology, 2004, 57, 178-189.	1.5	4
44	Towards a comprehensive view of the primary structure of venom proteins from the parasitoid wasp Pimpla hypochondriaca. Insect Biochemistry and Molecular Biology, 2004, 34, 565-571.	2.7	67
45	Allatostatins and allatotropin in the corpus cardiacum/corpus allatum complex of larval and adult lepidopterans studied by confocal laser scanning microscopy: correlation to juvenile hormone biosynthesis. Cell and Tissue Research, 2003, 314, 281-295.	2.9	28
46	ldentification of neuropeptides from brains of larval Manduca sexta and Lacanobia oleracea using MALDI-TOF mass spectrometry and post-source decay. Peptides, 2003, 24, 1465-1474.	2.4	34
47	A comparison of the neuropeptides from the retrocerebral complex of adult male and female Manduca sexta using MALDI-TOF mass spectrometry. Regulatory Peptides, 2003, 116, 127-137.	1.9	30
48	Fusion proteins containing neuropeptides as novel insect contol agents: snowdrop lectin delivers fused allatostatin to insect haemolymph following oral ingestion. Insect Biochemistry and Molecular Biology, 2002, 32, 1653-1661.	2.7	78
49	Metabolism of Manduca sexta allatostatin by hemolymph of larvae of the tomato moth, Lacanobia oleracea. Peptides, 2002, 23, 717-723.	2.4	13
50	Degradation of Manduca sexta allatostatin and allatotropin by proteases associated with the foregut of Lacanobia oleracea larvae. Peptides, 2002, 23, 2015-2023.	2.4	12
51	The role of allatostatic and allatotropic neuropeptides in the regulation of juvenile hormone biosynthesis in Lacanobia oleracea (Lepidoptera: Noctuidae)â~†. Peptides, 2001, 22, 255-261.	2.4	15
52	In vivo effects of Manduca sexta allatostatin and allatotropin on larvae of the tomato moth, Lacanobia oleracea. Physiological Entomology, 2001, 26, 181-188.	1.5	30
53	Morphological and physiological comparisons of two types of allatostatin in the brain and retrocerebral complex of the tomato moth,Lacanobia oleracea (Lepidoptera: Noctuidae). Journal of Comparative Neurology, 2000, 424, 37-46.	1.6	30
54	Juvenile hormone biosynthesis by corpora allata of larval tomato moth, Lacanobia oleracea, and regulation by Manduca sexta allatostatin and allatotropin. Insect Biochemistry and Molecular Biology, 2000, 30, 681-689.	2.7	60

NEIL AUDSLEY

#	Article	IF	CITATIONS
55	The Significance of Manduca sexta Allatostatin in the Tomato Moth Lacanobia oleracea. Annals of the New York Academy of Sciences, 1999, 897, 330-341.	3.8	22
56	Enzyme linked immunosorbent assay for Manduca sexta allatostatin (Mas-AS), isolation and measurement of Mas-AS immunoreactive peptide in Lacanobia oleracea. Insect Biochemistry and Molecular Biology, 1998, 28, 775-784.	2.7	38
57	Cross reactivity studies of CRF-related peptides on insect Malpighian tubules. Comparative Biochemistry and Physiology A, Comparative Physiology, 1995, 110, 87-93.	0.6	59