
Tracey L Petryshen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6210653/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sex-Dependent Shared and Nonshared Genetic Architecture Across Mood and Psychotic Disorders. Biological Psychiatry, 2022, 91, 102-117.	0.7	61
2	Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature, 2022, 604, 502-508.	13.7	929
3	Memantine treatment does not affect compulsive behavior or frontostriatal connectivity in an adolescent rat model for quinpirole-induced compulsive checking behavior. Psychopharmacology, 2022, 239, 2457-2470.	1.5	2
4	Genome-wide analyses of smoking behaviors in schizophrenia: Findings from the Psychiatric Genomics Consortium. Journal of Psychiatric Research, 2021, 137, 215-224.	1.5	10
5	Examining Sex-Differentiated Genetic Effects Across Neuropsychiatric and Behavioral Traits. Biological Psychiatry, 2021, 89, 1127-1137.	0.7	48
6	The Relationship Between Polygenic Risk Scores and Cognition in Schizophrenia. Schizophrenia Bulletin, 2020, 46, 336-344.	2.3	60
7	Structural and functional MRI of altered brain development in a novel adolescent rat model of quinpirole-induced compulsive checking behavior. European Neuropsychopharmacology, 2020, 33, 58-70.	0.3	7
8	MOLECULAR STUDIES OF THE ANKRYIN3 BIPOLAR DISORDER GWAS GENE IMPLICATE A ROLE IN MICROTUBULE DYNAMICS. European Neuropsychopharmacology, 2019, 29, S920-S921.	0.3	0
9	Drug discovery for psychiatric disorders using high-content single-cell screening of signaling network responses ex vivo. Science Advances, 2019, 5, eaau9093.	4.7	22
10	Gene expression imputation across multiple brain regions provides insights into schizophrenia risk. Nature Genetics, 2019, 51, 659-674.	9.4	154
11	Populationâ€based identityâ€byâ€descent mapping combined with exome sequencing to detect rare risk variants for schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2019, 180, 223-231.	1.1	2
12	Diffusion abnormalities in the corpus callosum in first episode schizophrenia: Associated with enlarged lateral ventricles and symptomatology. Psychiatry Research, 2019, 277, 45-51.	1.7	14
13	A comparison of neurocognition and functioning in first episode psychosis populations: do research samples reflect the real world?. Social Psychiatry and Psychiatric Epidemiology, 2019, 54, 291-301.	1.6	12
14	Utilizing Mutual Information Analysis to Explore the Relationship Between Gray and White Matter Structural Pathologies in Schizophrenia. Schizophrenia Bulletin, 2019, 45, 386-395.	2.3	7
15	Alteration of gray matter microstructure in schizophrenia. Brain Imaging and Behavior, 2018, 12, 54-63.	1.1	16
16	Abnormal relationships between local and global brain measures in subjects at clinical high risk for psychosis: a pilot study. Brain Imaging and Behavior, 2018, 12, 974-988.	1.1	7
17	T226. Genotype-By-Sex Interaction Effects in the Risk for Schizophrenia, Major Depressive Disorder, and Bipolar Disorder. Biological Psychiatry, 2018, 83, S216.	0.7	0
18	Estimation of Genetic Correlation via Linkage Disequilibrium Score Regression and Genomic Restricted Maximum Likelibood, American Journal of Human Genetics, 2018, 102, 1185-1194	2.6	119

#	Article	IF	CITATIONS
19	Analysis of shared heritability in common disorders of the brain. Science, 2018, 360, .	6.0	1,085
20	Disruption of the psychiatric risk gene Ankyrin 3 enhances microtubule dynamics through GSK3/CRMP2 signaling. Translational Psychiatry, 2018, 8, 135.	2.4	26
21	Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes. Cell, 2018, 173, 1705-1715.e16.	13.5	623
22	The Genetics of Endophenotypes of Neurofunction to Understand Schizophrenia (GENUS) consortium: A collaborative cognitive and neuroimaging genetics project. Schizophrenia Research, 2018, 195, 306-317.	1.1	17
23	Lithium reverses behavioral and axonal transport-related changes associated with ANK3 bipolar disorder gene disruption. European Neuropsychopharmacology, 2017, 27, 274-288.	0.3	20
24	MiR-137-derived polygenic risk: effects on cognitive performance in patients with schizophrenia and controls. Translational Psychiatry, 2017, 7, e1012-e1012.	2.4	34
25	513. Functional Characterization of Ankyrin Loss of Function Mutations Associated with Autism Spectrum Disorder. Biological Psychiatry, 2017, 81, S208-S209.	0.7	0
26	222. Functional Studies of the Ankryin3 Bipolar Disorder GWAS Gene in Mouse and Neuronal Models. Biological Psychiatry, 2017, 81, S91.	0.7	0
27	272. Ventricles, Corpus Callosum and MIR137 in Large N Study of Schizophrenia. Biological Psychiatry, 2017, 81, S111-S112.	0.7	0
28	701. Schizophrenia Genetic Risk Factors Are Associated with Cognitive Functions in the GENUS Consortium Collection. Biological Psychiatry, 2017, 81, S284.	0.7	0
29	Novel gene-brain structure relationships in psychotic disorder revealed using parallel independent component analyses. Schizophrenia Research, 2017, 182, 74-83.	1.1	9
30	Heritability of Neuropsychological Measures in Schizophrenia and Nonpsychiatric Populations: A Systematic Review and Meta-analysis. Schizophrenia Bulletin, 2017, 43, 788-800.	2.3	62
31	Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nature Genetics, 2017, 49, 27-35.	9.4	838
32	Tractography Analysis of 5 White Matter Bundles and Their Clinical and Cognitive Correlates in Early-Course Schizophrenia. Schizophrenia Bulletin, 2016, 42, 762-771.	2.3	45
33	Antidepressant-like effect of low dose ketamine and scopolamine co-treatment in mice. Neuroscience Letters, 2016, 620, 70-73.	1.0	22
34	A New MRI Masking Technique Based on Multiâ€Atlas Brain Segmentation in Controls and Schizophrenia: A Rapid and Viable Alternative to Manual Masking. Journal of Neuroimaging, 2016, 26, 28-36.	1.0	23
35	Enlarged lateral ventricles inversely correlate with reduced corpus callosum central volume in first episode schizophrenia: association with functional measures. Brain Imaging and Behavior, 2016, 10, 1264-1273.	1.1	30
36	Genetic influences on schizophrenia and subcortical brain volumes: large-scale proof of concept. Nature Neuroscience, 2016, 19, 420-431.	7.1	204

#	Article	IF	CITATIONS
37	Hyperactivity of caudate, parahippocampal, and prefrontal regions during working memory in never-medicated persons at clinical high-risk for psychosis. Schizophrenia Research, 2016, 173, 1-12.	1.1	15
38	Clinical high risk and first episode schizophrenia: Auditory event-related potentials. Psychiatry Research - Neuroimaging, 2015, 231, 126-133.	0.9	50
39	Modeling Linkage Disequilibrium Increases Accuracy of Polygenic Risk Scores. American Journal of Human Genetics, 2015, 97, 576-592.	2.6	1,098
40	Abnormal white matter connections between medial frontal regions predict symptoms in patients with first episode schizophrenia. Cortex, 2015, 71, 264-276.	1.1	20
41	Anterior commissural white matter fiber abnormalities in first-episode psychosis: A tractography study. Schizophrenia Research, 2015, 162, 29-34.	1.1	31
42	Ankyrin-G regulates neurogenesis and Wnt signaling by altering the subcellular localization of β-catenin. Molecular Psychiatry, 2015, 20, 388-397.	4.1	54
43	Analysis of schizophrenia-related genes and electrophysiological measures reveals ZNF804A association with amplitude of P300b elicited by novel sounds. Translational Psychiatry, 2014, 4, e346-e346.	2.4	29
44	Molecular Profiles of Pyramidal Neurons in the Superior Temporal Cortex in Schizophrenia. Journal of Neurogenetics, 2014, 28, 53-69.	0.6	75
45	White Matter Microstructure in Individuals at Clinical High Risk of Psychosis: A Whole-Brain Diffusion Tensor Imaging Study. Schizophrenia Bulletin, 2014, 40, 895-903.	2.3	97
46	Partitioning Heritability of Regulatory and Cell-Type-Specific Variants across 11 Common Diseases. American Journal of Human Genetics, 2014, 95, 535-552.	2.6	569
47	Biological insights from 108 schizophrenia-associated genetic loci. Nature, 2014, 511, 421-427.	13.7	6,934
48	Copy Number Variation in Obsessive-Compulsive Disorder and Tourette Syndrome: A Cross-Disorder Study. Journal of the American Academy of Child and Adolescent Psychiatry, 2014, 53, 910-919.	0.3	111
49	Diffusion tensor imaging study of the fornix in first episode schizophrenia and in healthy controls. Schizophrenia Research, 2014, 156, 157-160.	1.1	23
50	The ankyrin-3 gene is associated with posttraumatic stress disorder and externalizing comorbidity. Psychoneuroendocrinology, 2013, 38, 2249-2257.	1.3	31
51	The ANK3 Bipolar Disorder Gene Regulates Psychiatric-Related Behaviors That Are Modulated by Lithium and Stress. Biological Psychiatry, 2013, 73, 683-690.	0.7	94
52	Sex differences in the genetic risk for schizophrenia: History of the evidence for sexâ€specific and sexâ€dependent effects. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2013, 162, 698-710.	1.1	83
53	A Selective HDAC 1/2 Inhibitor Modulates Chromatin and Gene Expression in Brain and Alters Mouse Behavior in Two Mood-Related Tests. PLoS ONE, 2013, 8, e71323.	1.1	118
54	Excessive Extracellular Volume Reveals a Neurodegenerative Pattern in Schizophrenia Onset. Journal of Neuroscience, 2012, 32, 17365-17372.	1.7	259

#	Article	IF	CITATIONS
55	Ankyrin 3: genetic association with bipolar disorder and relevance to disease pathophysiology. Biology of Mood & Anxiety Disorders, 2012, 2, 18.	4.7	48
56	Genome-wide association studies of schizophrenia. Current Opinion in Psychiatry, 2012, 25, 76-82.	3.1	72
57	Sex-specific rates of transmission of psychosis in the New England high-risk family study. Schizophrenia Research, 2011, 128, 150-155.	1.1	36
58	AKT Kinase Activity Is Required for Lithium to Modulate Mood-Related Behaviors in Mice. Neuropsychopharmacology, 2011, 36, 1397-1411.	2.8	98
59	Population genetic study of the brain-derived neurotrophic factor (BDNF) gene. Molecular Psychiatry, 2010, 15, 810-815.	4.1	227
60	The genetics of reading disability. Current Psychiatry Reports, 2009, 11, 149-155.	2.1	12
61	Genomic survey of prepulse inhibition in mouse chromosome substitution strains. Genes, Brain and Behavior, 2009, 8, 806-816.	1.1	11
62	Disrupted in Schizophrenia 1 Regulates Neuronal Progenitor Proliferation via Modulation of GSK31²/β-Catenin Signaling. Cell, 2009, 136, 1017-1031.	13.5	703
63	Family-Based Association Study of Lithium-Related and Other Candidate Genes in Bipolar Disorder. Archives of General Psychiatry, 2008, 65, 53.	13.8	55
64	Schizophrenia: Do the Genetics and Neurobiology of Neuregulin Provide a Pathogenesis Model?. Harvard Review of Psychiatry, 2006, 14, 64-77.	0.9	8
65	Support for involvement of neuregulin 1 in schizophrenia pathophysiology. Molecular Psychiatry, 2005, 10, 366-374.	4.1	168
66	Genetic investigation of chromosome 5q GABAA receptor subunit genes in schizophrenia. Molecular Psychiatry, 2005, 10, 1074-1088.	4.1	112
67	Linkage disequilibrium and haplotype structure of five GABAA receptor subunit genes investigated for association with schizophrenia. Molecular Psychiatry, 2005, 10, 1057-1057.	4.1	8
68	Two Quantitative Trait Loci for Prepulse Inhibition of Startle Identified on Mouse Chromosome 16 Using Chromosome Substitution Strains. Genetics, 2005, 171, 1895-1904.	1.2	34
69	Fus1p Interacts With Components of the Hog1p Mitogen-Activated Protein Kinase and Cdc42p Morphogenesis Signaling Pathways to Control Cell Fusion During Yeast Mating. Genetics, 2004, 166, 67-77.	1.2	60
70	Assessing the impact of population stratification on genetic association studies. Nature Genetics, 2004, 36, 388-393.	9.4	734
71	Genome-wide scan in Portuguese Island families identifies 5q31–5q35 as a susceptibility locus for schizophrenia and psychosis. Molecular Psychiatry, 2004, 9, 213-218.	4.1	105
72	A dyslexia susceptibility locus (DYX7) linked to dopamine D4 receptor (DRD4) region on chromosome 11p15.5. American Journal of Medical Genetics Part A, 2004, 125B, 112-119.	2.4	55

#	Article	IF	CITATIONS
73	Confirmation of a dyslexia susceptibility locus on chromosome 1p34-p36 in a set of 100 Canadian families. American Journal of Medical Genetics Part A, 2004, 127B, 117-124.	2.4	60
74	Genomewide Linkage Analysis of Bipolar Disorder by Use of a High-Density Single-Nucleotide–Polymorphism (SNP) Genotyping Assay: A Comparison with Microsatellite Marker Assays and Finding of Significant Linkage to Chromosome 6q22. American Journal of Human Genetics, 2004, 74, 886-897.	2.6	167
75	Supportive evidence for the DYX3 dyslexia susceptibility gene in Canadian families. Journal of Medical Genetics, 2002, 39, 125-126.	1.5	68
76	Evidence for a susceptibility locus on chromosome 6q influencing phonological coding dyslexia. American Journal of Medical Genetics Part A, 2001, 105, 507-517.	2.4	77
77	Absence of Significant Linkage between Phonological Coding Dyslexia and Chromosome 6p23-21.3, as Determined by Use of Quantitative-Trait Methods: Confirmation of Qualitative Analyses. American Journal of Human Genetics, 2000, 66, 708-714.	2.6	50