Toru Yada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6210227/publications.pdf Version: 2024-02-01

ΤΟΡΗ ΥΛΟΛ

#	Article	IF	CITATIONS
1	Samples returned from the asteroid Ryugu are similar to Ivuna-type carbonaceous meteorites. Science, 2023, 379, .	12.6	97
2	Pebbles and sand on asteroid (162173) Ryugu: In situ observation and particles returned to Earth. Science, 2022, 375, 1011-1016.	12.6	78
3	Preliminary analysis of the Hayabusa2 samples returned from C-type asteroid Ryugu. Nature Astronomy, 2022, 6, 214-220.	10.1	136
4	First compositional analysis of Ryugu samples by the MicrOmega hyperspectral microscope. Nature Astronomy, 2022, 6, 221-225.	10.1	65
5	Calibration and performances of the MicrOmega instrument for the characterization of asteroid Ryugu returned samples. Review of Scientific Instruments, 2022, 93, .	1.3	5
6	Environmental assessment in the prelaunch phase of Hayabusa2 for safety declaration of returned samples from the asteroid (162173) Ryugu: background monitoring and risk management during development of the sampler system. Earth, Planets and Space, 2022, 74, .	2.5	11
7	Advanced Curation of Astromaterials for Planetary Science. Space Science Reviews, 2019, 215, 1.	8.1	50
8	Hayabusaâ€returned sample curation in the Planetary Material Sample Curation Facility of JAXA. Meteoritics and Planetary Science, 2014, 49, 135-153.	1.6	70
9	Space environment of an asteroid preserved on micrograins returned by the Hayabusa spacecraft. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E624-9.	7.1	97
10	Itokawa Dust Particles: A Direct Link Between S-Type Asteroids and Ordinary Chondrites. Science, 2011, 333, 1113-1116.	12.6	487
11	Three-Dimensional Structure of Hayabusa Samples: Origin and Evolution of Itokawa Regolith. Science, 2011, 333, 1125-1128.	12.6	249
12	Irradiation History of Itokawa Regolith Material Deduced from Noble Gases in the Hayabusa Samples. Science, 2011, 333, 1128-1131.	12.6	128