Shin-ichiro Kawano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6209182/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The ProteomeXchange consortium in 2017: supporting the cultural change in proteomics public data deposition. Nucleic Acids Research, 2017, 45, D1100-D1106.	14.5	860
2	The ProteomeXchange consortium in 2020: enabling â€~big data' approaches in proteomics. Nucleic Acids Research, 2020, 48, D1145-D1152.	14.5	491
3	jPOSTrepo: an international standard data repository for proteomes. Nucleic Acids Research, 2017, 45, D1107-D1111.	14.5	451
4	KEGG as a glycome informatics resource. Glycobiology, 2006, 16, 63R-70R.	2.5	279
5	Structure of bacterial cellulose synthase subunit D octamer with four inner passageways. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17957-17961.	7.1	118
6	The jPOST environment: an integrated proteomics data repository and database. Nucleic Acids Research, 2019, 47, D1218-D1224.	14.5	94
7	Structural basis of yeast Tim40/Mia40 as an oxidative translocator in the mitochondrial intermembrane space. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14403-14407.	7.1	90
8	Proteomics Standards Initiative: Fifteen Years of Progress and Future Work. Journal of Proteome Research, 2017, 16, 4288-4298.	3.7	87
9	Prediction of glycan structures from gene expression data based on glycosyltransferase reactions. Bioinformatics, 2005, 21, 3976-3982.	4.1	78
10	Structural and mechanistic insights into phospholipid transfer by Ups1–Mdm35 in mitochondria. Nature Communications, 2015, 6, 7922.	12.8	75
11	Cellulose complementing factor (Ccp) is a new member of the cellulose synthase complex (terminal) Tj ETQq1 1).784314 2.2	rgBT /Overlo
12	WURCS: The Web3 Unique Representation of Carbohydrate Structures. Journal of Chemical Information and Modeling, 2014, 54, 1558-1566.	5.4	61
13	Cloning of Cellulose Synthesis Related Genes from Acetobacter xylinum ATCC23769 and ATCC53582: Comparison of Cellulose Synthetic Ability Between Strains. DNA Research, 2002, 9, 149-156.	3.4	59
14	GlycoRDF: an ontology to standardize glycomics data in RDF. Bioinformatics, 2015, 31, 919-925.	4.1	51
15	Structural characterization of the Acetobacter xylinum endo-l²-1,4-glucanase CMCax required for cellulose biosynthesis. Proteins: Structure, Function and Bioinformatics, 2006, 64, 1069-1077.	2.6	47
16	BioHackathon series in 2011 and 2012: penetration of ontology and linked data in life science domains. Journal of Biomedical Semantics, 2014, 5, 5.	1.6	47
17	Universal Spectrum Identifier for mass spectra. Nature Methods, 2021, 18, 768-770.	19.0	47
18	Introducing glycomics data into the Semantic Web. Journal of Biomedical Semantics, 2013, 4, 39.	1.6	46

Shin-Ichiro Kawano

#	Article	IF	CITATIONS
19	In Vivo Curdlan/Cellulose Bionanocomposite Synthesis by Genetically Modified <i>Gluconacetobacter xylinus</i> . Biomacromolecules, 2015, 16, 3154-3160.	5.4	45
20	Effects of endogenous endo-β-1,4-glucanase on cellulose biosynthesis in Acetobacter xylinum ATCC23769. Journal of Bioscience and Bioengineering, 2002, 94, 275-281.	2.2	42
21	Comprehensive analysis of glycosyltransferases in eukaryotic genomes for structural and functional characterization of glycans. Carbohydrate Research, 2009, 344, 881-887.	2.3	37
22	Cellulose production by Enterobacter sp. CJF-002 and identification of genes for cellulose biosynthesis. Cellulose, 2012, 19, 1989-2001.	4.9	35
23	Double Helices of a Pyridine-Appended Zinc Chlorophyll Derivative. Journal of the American Chemical Society, 2013, 135, 5262-5265.	13.7	33
24	Structural analyses of new tri- and tetrasaccharides produced from disaccharides by transglycosylation of purified Trichoderma viride beta-glucosidase. Glycoconjugate Journal, 1999, 16, 415-423.	2.7	27
25	Regulation of endoglucanase gene (cmcax) expression in Acetobacter xylinum. Journal of Bioscience and Bioengineering, 2008, 106, 88-94.	2.2	25
26	Integrated Proteomics Identified Novel Activation of Dynein IC2-GR-COX-1 Signaling in Neurofibromatosis Type I (NF1) Disease Model Cells. Molecular and Cellular Proteomics, 2013, 12, 1377-1394.	3.8	24
27	Role of the membrane potential in mitochondrial protein unfolding and import. Scientific Reports, 2019, 9, 7637.	3.3	23
28	Effects of Endogenous Endo-β-1,4-Glucanase on Cellulose Biosynthesis in Acetobacter xylinum ATCC23769. Journal of Bioscience and Bioengineering, 2002, 94, 275-281.	2.2	23
29	NMR analyses on the interactions of the yeast Tim50 Câ€ŧerminal region with the presequence and Tim50 core domain. FEBS Letters, 2014, 588, 678-684.	2.8	20
30	The 2nd DBCLS BioHackathon: interoperable bioinformatics Web services for integrated applications. Journal of Biomedical Semantics, 2011, 2, 4.	1.6	19
31	Proteomics Standards Initiative's ProForma 2.0: Unifying the Encoding of Proteoforms and Peptidoforms. Journal of Proteome Research, 2022, 21, 1189-1195.	3.7	14
32	TogoTable: cross-database annotation system using the Resource Description Framework (RDF) data model. Nucleic Acids Research, 2014, 42, W442-W448.	14.5	7
33	Crystallization and preliminary crystallographic analysis of the cellulose biosynthesis-related protein CMCax fromAcetobacter xylinum. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 252-254.	0.7	5
34	BioHackathon 2015: Semantics of data for life sciences and reproducible research. F1000Research, 2020, 9, 136.	1.6	5
35	Purification, Crystallization and Preliminary X-Ray Studies of AxCesD Required for Efficient Cellulose Biosynthesis in Acetobacter xylinum. Protein and Peptide Letters, 2008, 15, 115-117.	0.9	4
36	A Lightâ€Harvesting/Chargeâ€Separation Model with Energy Gradient Made of Assemblies of <i>meta</i> â€Pyridyl Zinc Porphyrins. Chemistry - A European Journal, 2021, 27, 4053-4063.	3.3	1

#	Article	IF	CITATIONS
37	Glycobiology Meets the Semantic Web. , 2017, , 351-370.		1
0.0	3P-030 Structural analysis of mitochondrial thiol oxidase Tim40(Protein:Structure & Function,The) Tj ETQq0 0 0	rg₿Ţ∫Ove	rlock 10 Tf 50

38	X	0.1	0	

39	BioHackathon series in 2013 and 2014: improvements of semantic interoperability in life science data and services. F1000Research, 0, 8, 1677.		1.6	0	
----	---	--	-----	---	--