Vittorio Venturi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6208080/publications.pdf

Version: 2024-02-01

152 papers	8,154 citations	47006 47 h-index	82 g-index
158	158	158	8481
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Genomic features of bacterial adaptation to plants. Nature Genetics, 2018, 50, 138-150.	21.4	480
2	Signaling in the Rhizosphere. Trends in Plant Science, 2016, 21, 187-198.	8.8	465
3	Regulation of quorum sensing inPseudomonas. FEMS Microbiology Reviews, 2006, 30, 274-291.	8.6	421
4	Detection of quorum-sensing N-acyl homoserine lactone signal molecules by bacterial biosensors. FEMS Microbiology Letters, 2007, 266, 1-9.	1.8	349
5	Synergisms between microbial pathogens in plant disease complexes: a growing trend. Frontiers in Plant Science, 2015, 06, 385.	3.6	335
6	Common Features of Environmental and Potentially Beneficial Plant-Associated Burkholderia. Microbial Ecology, 2012, 63, 249-266.	2.8	321
7	LuxR-family â€~solos': bachelor sensors/regulators of signalling molecules. Microbiology (United) Tj ETQq1 1	0.784314	FrgBT/Overlo
8	Plant Growth-Promoting Pseudomonas putida WCS358 Produces and Secretes Four Cyclic Dipeptides: Cross-Talk with Quorum Sensing Bacterial Sensors. Current Microbiology, 2002, 45, 250-254.	2.2	183
9	Sharing of quorum-sensing signals and role of interspecies communities in a bacterial plant disease. ISME Journal, 2011, 5, 1857-1870.	9.8	133
10	RsaL provides quorum sensing homeostasis and functions as a global regulator of gene expression in <i>Pseudomonas aeruginosa (i). Molecular Microbiology, 2007, 66, 1557-1565.</i>	2.5	130
11	Plant-Influenced Gene Expression in the Rice Endophyte <i>Burkholderia kururiensis</i> M130. Molecular Plant-Microbe Interactions, 2015, 28, 10-21.	2.6	130
12	Control of rpoS transcription in Escherichia coli and Pseudomonas: why so different?. Molecular Microbiology, 2003, 49, 1-9.	2.5	122
13	Chemical Signaling Between Plants and Plant-Pathogenic Bacteria. Annual Review of Phytopathology, 2013, 51, 17-37.	7.8	119
14	Plant-Growth Promotion and Biocontrol Properties of Three Streptomyces spp. Isolates to Control Bacterial Rice Pathogens. Frontiers in Microbiology, 2019, 10, 290.	3.5	117
15	A novel widespread interkingdom signaling circuit. Trends in Plant Science, 2013, 18, 167-174.	8.8	115
16	Genetics of ferulic acid bioconversion to protocatechuic acid in plant-growth-promoting Pseudomonas putida WCS358. Microbiology (United Kingdom), 1998, 144, 965-973.	1.8	109
17	Pseudomonas aeruginosa relA Contributes to Virulence in Drosophila melanogaster. Infection and Immunity, 2004, 72, 5638-5645.	2.2	109
18	The Quorum-Sensing Negative Regulator RsaL of Pseudomonas aeruginosa Binds to the lasl Promoter. Journal of Bacteriology, 2006, 188, 815-819.	2.2	97

#	Article	IF	Citations
19	OryR Is a LuxR-Family Protein Involved in Interkingdom Signaling between Pathogenic <i>Xanthomonas oryzae </i> pv. oryzae and Rice. Journal of Bacteriology, 2009, 191, 890-897.	2.2	93
20	Regulation of the N -Acyl Homoserine Lactone-Dependent Quorum-Sensing System in Rhizosphere Pseudomonas putida WCS358 and Cross-Talk with the Stationary-Phase RpoS Sigma Factor and the Global Regulator GacA. Applied and Environmental Microbiology, 2004, 70, 5493-5502.	3.1	84
21	Iron regulation of siderophore biosynthesis and transport in Pseudomonas putida WCS358: involvement of a transcriptional activator and of the Fur protein. Molecular Microbiology, 1995, 15, 1081-1093.	2.5	83
22	Involvement of a Quorum-Sensing-Regulated Lipase Secreted by a Clinical Isolate of Burkholderia glumae in Severe Disease Symptoms in Rice. Applied and Environmental Microbiology, 2007, 73, 4950-4958.	3.1	82
23	Lysobacter enzymogenes Uses Two Distinct Cell-Cell Signaling Systems for Differential Regulation of Secondary-Metabolite Biosynthesis and Colony Morphology. Applied and Environmental Microbiology, 2013, 79, 6604-6616.	3.1	82
24	A LuxR homologue of Xanthomonas oryzae pv. oryzae is required for optimal rice virulence. Molecular Plant Pathology, 2007, 8, 529-538.	4.2	81
25	Lasl/R and Rhll/R Quorum Sensing in a Strain of <i>Pseudomonas aeruginosa</i> Beneficial to Plants. Applied and Environmental Microbiology, 2009, 75, 5131-5140.	3.1	77
26	Rice bacterial endophytes: isolation of a collection, identification of beneficial strains and microbiome analysis. Environmental Microbiology Reports, 2016, 8, 388-398.	2.4	75
27	Bacterial Microbiota of Rice Roots: 16S-Based Taxonomic Profiling of Endophytic and Rhizospheric Diversity, Endophytes Isolation and Simplified Endophytic Community. Microorganisms, 2018, 6, 14.	3.6	75
28	Regulation of rpoS Gene Expression in Pseudomonas: Involvement of a TetR Family Regulator. Journal of Bacteriology, 2001, 183, 3712-3720.	2.2	74
29	Gene regulation of siderophore-mediated iron acquisition in Pseudomonas: not only the Fur repressor. Molecular Microbiology, 1995, 17, 603-610.	2.5	73
30	Quorum-Sensing System and Stationary-Phase Sigma Factor (rpoS) of the Onion Pathogen Burkholderia cepacia Genomovar I Type Strain, ATCC 25416. Applied and Environmental Microbiology, 2003, 69, 1739-1747.	3.1	73
31	Quorum sensing in the Burkholderia cepacia complex. Research in Microbiology, 2004, 155, 238-244.	2.1	73
32	Assessment of three Resistance-Nodulation-Cell Division drug efflux transporters of Burkholderia cenocepacia in intrinsic antibiotic resistance. BMC Microbiology, 2009, 9, 200.	3.3	72
33	Transcriptomic analysis reveals new regulatory roles of Clp signaling in secondary metabolite biosynthesis and surface motility in Lysobacter enzymogenes OH11. Applied Microbiology and Biotechnology, 2014, 98, 9009-9020.	3.6	70
34	The olive knot disease as a model to study the role of interspecies bacterial communities in plant disease. Frontiers in Plant Science, 2015, 6, 434.	3.6	69
35	Bacterial Subfamily of LuxR Regulators That Respond to Plant Compounds. Applied and Environmental Microbiology, 2011, 77, 4579-4588.	3.1	68
36	Quorum Sensing Inhibitors from the Sea Discovered Using Bacterial N-acyl-homoserine Lactone-Based Biosensors. Marine Drugs, 2017, 15, 53.	4.6	68

3

#	Article	IF	CITATIONS
37	Roles of a Solo LuxR in the Biological Control Agent <i>Lysobacter enzymogenes</i> Strain OH11. Phytopathology, 2014, 104, 224-231.	2.2	63
38	The plant pathogen <i>Pseudomonas fuscovaginae</i> contains two conserved quorum sensing systems involved in virulence and negatively regulated by RsaL and the novel regulator RsaM. Environmental Microbiology, 2011, 13, 145-162.	3.8	58
39	Bacterial LuxR solos have evolved to respond to different molecules including signals from plants. Frontiers in Plant Science, 2013, 4, 447.	3.6	58
40	Tobramycin at subinhibitory concentration inhibits the Rhll/R quorum sensing system in a Pseudomonas aeruginosaenvironmental isolate. BMC Infectious Diseases, 2010, 10, 148.	2.9	56
41	Commonalities and Differences in Regulation of $\langle i \rangle N \langle i \rangle$ -Acyl Homoserine Lactone Quorum Sensing in the Beneficial Plant-Associated $\langle i \rangle$ Burkholderia $\langle i \rangle$ Species Cluster. Applied and Environmental Microbiology, 2010, 76, 4302-4317.	3.1	55
42	Purification and Properties of an Esterase from the Yeast <i>Saccharomyces cerevisiae</i> and Identification of the Encoding Gene. Applied and Environmental Microbiology, 1999, 65, 3470-3472.	3.1	53
43	TetR Family Member PsrA Directly Binds the Pseudomonas rpoS and psrA Promoters. Journal of Bacteriology, 2002, 184, 2324-2330.	2.2	53
44	Proteomic Analysis Reveals Novel Extracellular Virulence-Associated Proteins and Functions Regulated by the Diffusible Signal Factor (DSF) in <i>Xanthomonas oryzae</i> pv. <i>oryzicola</i> Journal of Proteome Research, 2013, 12, 3327-3341.	3.7	52
45	Bacterial multispecies studies and microbiome analysis of a plant disease. Microbiology (United) Tj ETQq1 1 0.78	4314 rgB1 1.8	 Gyerlock
46	Oryza sativa rice plants contain molecules that activate different quorum-sensing N-acyl homoserine lactone biosensors and are sensitive to the specific AiiA lactonase. FEMS Microbiology Letters, 2007, 269, 213-220.	1.8	50
47	Identification and characterization of a siderophore regulatory gene (pfrA) of Pseudomonas putida WCS358: homology to the alginate regulatory gene aigQ of Pseudomonas aeruginosa. Molecular Microbiology, 1993, 10, 63-73.	2.5	49
48	The acetyl xylan esterase of Bacillus pumilus belongs to a family of esterases with broad substrate specificity The GenBank/EMBL/DDBJ accession number for the sequence reported in this paper is AJ249957 Microbiology (United Kingdom), 2000, 146, 1585-1591.	1.8	49
49	Purification and Characterization of an Acetyl Xylan Esterase from <i>Bacillus pumilus</i> . Applied and Environmental Microbiology, 1998, 64, 789-792.	3.1	49
50	Co-Swarming and Local Collapse: Quorum Sensing Conveys Resilience to Bacterial Communities by Localizing Cheater Mutants in Pseudomonas aeruginosa. PLoS ONE, 2010, 5, e9998.	2.5	48
51	The Kiwifruit Emerging Pathogen Pseudomonas syringae pv. actinidiae Does Not Produce AHLs but Possesses Three LuxR Solos. PLoS ONE, 2014, 9, e87862.	2.5	46
52	The Pseudomonas Quorum-Sensing Regulator RsaL Belongs to the Tetrahelical Superclass of H-T-H Proteins. Journal of Bacteriology, 2007, 189, 1922-1930.	2.2	45
53	Pseudomonas corrugata contains a conserved N-acyl homoserine lactone quorum sensing system; its role in tomato pathogenicity and tobacco hypersensitivity response. FEMS Microbiology Ecology, 2007, 61, 222-234.	2.7	45
54	The new group of non-pathogenic plant-associated nitrogen-fixing Burkholderia spp. shares a conserved quorum-sensing system, which is tightly regulated by the RsaL repressor. Microbiology (United Kingdom), 2008, 154, 2048-2059.	1.8	45

#	Article	IF	CITATIONS
55	Identification of Quorum-Sensing-Regulated Genes of <i>Burkholderia cepacia</i> Bacteriology, 2003, 185, 6456-6462.	2.2	42
56	<i><scp>P</scp>seudomonas corrugata <scp>crpCDE</scp></i> is part of the cyclic lipopeptide corpeptin biosynthetic gene cluster and is involved in bacterial virulence in tomato and in hypersensitive response in <i><scp>N</scp>icotiana benthamiana</i> . Molecular Plant Pathology, 2015, 16, 495-506.	4.2	42
57	N-acyl-homoserine-lactone quorum sensing in tomato phytopathogenic Pseudomonas spp. is involved in the regulation of lipodepsipeptide production. Journal of Biotechnology, 2012, 159, 274-282.	3.8	41
58	A proteomic study of Xanthomonas oryzae pv. oryzae in rice xylem sap. Journal of Proteomics, 2012, 75, 5911-5919.	2.4	41
59	Blue laser light inhibits biofilm formation in vitro and in vivo by inducing oxidative stress. Npj Biofilms and Microbiomes, 2019, 5, 29.	6.4	40
60	Regulation of the p-hydroxybenzoic acid hydroxylase gene (pobA) in plant-growth-promoting Pseudomonas putida WCS358 The GenBank/EMBL/DDBJ accession numbers for the pcaR, pobC-pobA and pcaHG sequences reported in this paper are AJ252090, AJ251792 and AJ295623, respectively Microbiology (United Kingdom), 2001, 147, 1611-1620.	1.8	39
61	Role of GacA, LasI, Rhll, Ppk, PsrA, Vfr and ClpXP in the regulation of the stationary-phase sigma factor rpoS/RpoS in Pseudomonas. Archives of Microbiology, 2003, 180, 264-271.	2.2	39
62	Novel target genes of PsrA transcriptional regulator ofPseudomonas aeruginosa. FEMS Microbiology Letters, 2005, 246, 175-181.	1.8	39
63	<i>In Vitro</i> Antibacterial Activity of Sphaeropsidins and Chemical Derivatives toward <i>Xanthomonas oryzae</i> pv. <i>oryzae</i> , the Causal Agent of Rice Bacterial Blight. Journal of Natural Products, 2011, 74, 2520-2525.	3.0	39
64	The interâ€kingdom solo <scp>OryR</scp> regulator of <i><scp>X</scp>anthomonas oryzae</i> is important for motility. Molecular Plant Pathology, 2013, 14, 211-221.	4.2	38
65	The Organization of the Quorum Sensing luxI/R Family Genes in Burkholderia. International Journal of Molecular Sciences, 2013, 14, 13727-13747.	4.1	38
66	Phytohormone-mediated interkingdom signaling shapes the outcome of rice-Xanthomonas oryzae pv. oryzae interactions. BMC Plant Biology, 2015, 15, 10.	3.6	36
67	Plant Disease Management: Leveraging on the Plant-Microbe-Soil Interface in the Biorational Use of Organic Amendments. Frontiers in Plant Science, 2021, 12, 700507.	3.6	36
68	A thermostable \hat{l} ±-arabinofuranosidase from xylanolytic Bacillus pumilus: purification and characterisation. Journal of Biotechnology, 2003, 101, 69-79.	3.8	35
69	The virtue of temperance: builtâ€in negative regulators of quorum sensing in <i>Pseudomonas</i> . Molecular Microbiology, 2011, 82, 1060-1070.	2.5	35
70	Negative Regulation of Violacein Biosynthesis in Chromobacterium violaceum. Frontiers in Microbiology, 2017, 8, 349.	3.5	35
71	Classifying the Topology of AHL-Driven Quorum Sensing Circuits in Proteobacterial Genomes. Sensors, 2012, 12, 5432-5444.	3.8	34
72	Bacterial cyclic βâ€(1,2)â€glucans sequester iron to protect against ironâ€induced toxicity. EMBO Reports, 2018, 19, 172-186.	4.5	33

#	Article	IF	CITATIONS
73	Regulon Studies and <i>In Planta</i> Role of the Bral/R Quorum-Sensing System in the Plant-Beneficial Burkholderia Cluster. Applied and Environmental Microbiology, 2013, 79, 4421-4432.	3.1	32
74	Cloning and characterisation of the rpoS gene from plant growth-promoting Pseudomonas putida WCS358: RpoS is not involved in siderophore and homoserine lactone production. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1999, 1489, 413-420.	2.4	31
75	The Mechanism of Killing by the Proline-Rich Peptide Bac7(1–35) against Clinical Strains of Pseudomonas aeruginosa Differs from That against Other Gram-Negative Bacteria. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	31
76	The challenges of designing a benchmark strategy for bioinformatics pipelines in the identification of antimicrobial resistance determinants using next generation sequencing technologies. F1000Research, 2018, 7, 459.	1.6	31
77	Involvement of quorum sensing and RpoS in rice seedling blight caused byBurkholderia plantarii. FEMS Microbiology Letters, 2006, 259, 106-112.	1.8	30
78	A New N -Acyl Homoserine Lactone Synthase in an Uncultured Symbiont of the Red Sea Sponge Theonella swinhoei. Applied and Environmental Microbiology, 2016, 82, 1274-1285.	3.1	30
79	In Planta Colonization and Role of T6SS in Two Rice <i>Kosakonia</i> Endophytes. Molecular Plant-Microbe Interactions, 2020, 33, 349-363.	2.6	30
80	Virulence Attenuation of Pectobacterium carotovorum Using N-Acyl-homoserine Lactone Degrading Bacteria Isolated from Potato Rhizosphere. Plant Pathology Journal, 2011, 27, 242-248.	1.7	29
81	The Pseudomonas putida Lon protease is involved in N-acyl homoserine lactone quorum sensing regulation. BMC Microbiology, 2007, 7, 71.	3.3	28
82	PpoR is a conserved unpaired LuxR solo of Pseudomonas putida which binds N-acyl homoserine lactones. BMC Microbiology, 2009, 9, 125.	3.3	28
83	The plant pathogenErwinia amylovoraproduces acyl-homoserine lactone signal molecules in vitro and in planta. FEMS Microbiology Letters, 2004, 241, 179-183.	1.8	27
84	Future research trends in the major chemical language of bacteria. HFSP Journal, 2009, 3, 105-116.	2.5	27
85	Draft Genome Sequence of the Rice Endophyte Burkholderia kururiensis M130. Genome Announcements, 2013, 1, e0022512.	0.8	27
86	A simple model for the early events of quorum sensing in Pseudomonas aeruginosa: modeling bacterial swarming as the movement of an "activation zone". Biology Direct, 2009, 4, 6.	4.6	26
87	<i>Xanthomonas oryzae</i> pv. <i>oryzae</i> XKK.12 Contains an AroQ _γ Chorismate Mutase That Is Involved in Rice Virulence. Phytopathology, 2010, 100, 262-270.	2.2	26
88	Isolation, Characterization, and Heterologous Expression of a Carboxylesterase of Pseudomonas aeruginosa PAO1. Current Microbiology, 2005, 50, 102-109.	2.2	24
89	Involvement of both PKS and NRPS in antibacterial activity in <i>Lysobacter enzymogenes</i> OH11. FEMS Microbiology Letters, 2014, 355, 170-176.	1.8	23
90	A LuxR Homolog in a Cottonwood Tree Endophyte That Activates Gene Expression in Response to a Plant Signal or Specific Peptides. MBio, 2016, 7 , .	4.1	23

#	Article	IF	CITATIONS
91	Identification, characterization and regulation of two secreted polygalacturonases of the emerging rice pathogen Burkholderia glumae. FEMS Microbiology Ecology, 2008, 65, 251-262.	2.7	22
92	The Transcriptional Activator <i>rfiA</i> Is Quorum-Sensing Regulated by Cotranscription with the <i>luxl</i> Homolog <i>pcol</i> and Is Essential for Plant Virulence in <i>Pseudomonas corrugata</i> Molecular Plant-Microbe Interactions, 2009, 22, 1514-1522.	2.6	22
93	N-Acyl Homoserine Lactones and Lux Solos Regulate Social Behaviour and Virulence of Pseudomonas syringae pv. actinidiae. Microbial Ecology, 2020, 79, 383-396.	2.8	22
94	Molecular analysis of iron transport in plant growth-promotingPseudomonas putida WCS358. Biology of Metals, 1991, 4, 36-40.	1.1	21
95	Editorial: LuxR Solos are Becoming Major Players in Cell–Cell Communication in Bacteria. Frontiers in Cellular and Infection Microbiology, 2015, 5, 89.	3.9	21
96	A Na ⁺ /Ca ²⁺ exchanger of the olive pathogen <i>Pseudomonas savastanoi</i> pv. <i>savastanoi</i>) is critical for its virulence. Molecular Plant Pathology, 2019, 20, 716-730.	4.2	21
97	Alginate regulatory and biosynthetic gene homologs in pseudomonas putida WCS358: correlation with the siderophore regulatory gene pfrA. Gene, 1995, 155, 83-88.	2.2	20
98	The presence, type and role of <i> N </i> > acyl homoserine lactone quorum sensing in fluorescent <i> Pseudomonas </i> originally isolated from rice rhizospheres are unpredictable. FEMS Microbiology Letters, 2008, 288, 102-111.	1.8	20
99	LsbB Bacteriocin Interacts with the Third Transmembrane Domain of the YvjB Receptor. Applied and Environmental Microbiology, 2016, 82, 5364-5374.	3.1	20
100	Quorum sensing and RsaM regulons of the rice pathogen Pseudomonas fuscovaginae. Microbiology (United Kingdom), 2017, 163, 765-777.	1.8	20
101	Structural Insights into a Novel Interkingdom Signaling Circuit by Cartography of the Ligand-Binding Sites of the Homologous Quorum Sensing LuxR-Family. International Journal of Molecular Sciences, 2013, 14, 20578-20596.	4.1	18
102	Draft Genome Sequence of Rice Endophyte-Associated Isolate Kosakonia oryzae KO348. Genome Announcements, $2015, 3, .$	0.8	18
103	Construction of recombinants Pseudomonas putida BO14 and Escherichia coli QEFCA8 for ferulic acid biotransformation to vanillin. Journal of Bioscience and Bioengineering, 1999, 88, 103-106.	2.2	17
104	Incoming pathogens team up with harmless â€~resident' bacteria. Trends in Microbiology, 2012, 20, 160-164.	7.7	17
105	Draft Genome Sequence of the Plant Pathogen Dickeya zeae DZ2Q, Isolated from Rice in Italy. Genome Announcements, 2013, 1, .	0.8	17
106	Stability of Multispecies Bacterial Communities: Signaling Networks May Stabilize Microbiomes. PLoS ONE, 2013, 8, e57947.	2.5	17
107	Identification of virulence associated loci in the emerging broad host range plant pathogen Pseudomonas fuscovaginae. BMC Microbiology, 2014, 14, 274.	3.3	17
108	Draft Genome Sequence of Pseudomonas savastanoi pv. savastanoi Strain DAPP-PG 722, Isolated in Italy from an Olive Plant Affected by Knot Disease. Genome Announcements, 2014, 2, .	0.8	17

7

#	Article	IF	Citations
109	A Siderophore Peptide Synthetase Gene from Plant-growth-promoting Pseudomonas putida WCS358. Systematic and Applied Microbiology, 2001, 24, 321-330.	2.8	16
110	Molecular characterisation of an endophyte showing a strong antagonistic activity against Pseudomonas syringae pv. actinidiae. Plant and Soil, 2016, 405, 97-106.	3.7	16
111	Quorum Sensing in Pseudomonas savastanoi pv. savastanoi and Erwinia toletana: Role in Virulence and Interspecies Interactions in the Olive Knot. Applied and Environmental Microbiology, 2018, 84, .	3.1	16
112	Isolation, heterologous expression and characterization of an endo-polygalacturonase produced by the phytopathogen Burkholderia cepacia. Protein Expression and Purification, 2007, 54, 300-308.	1.3	15
113	Locality versus globality in bacterial signalling: can local communication stabilize bacterial communities?. Biology Direct, 2010, 5, 30.	4.6	14
114	Draft Genome Sequence of Pseudomonas fuscovaginae, a Broad-Host-Range Pathogen of Plants. Journal of Bacteriology, 2012, 194, 2765-2766.	2.2	14
115	Pathobiomes Revealed that Pseudomonas fuscovaginae and Sarocladium oryzae Are Independently Associated with Rice Sheath Rot. Microbial Ecology, 2020, 80, 627-642.	2.8	14
116	The rice foot rot pathogen <scp><i>Dickeya zeae</i></scp> alters the inâ€field plant microbiome. Environmental Microbiology, 2021, 23, 7671-7687.	3.8	14
117	N-Acyl Homoserine Lactone Quorum Sensing in Gram-Negative Rhizobacteria. Soil Biology, 2008, , 69-90.	0.8	13
118	Functional Characterization of the Quorum Sensing Regulator RsaL in the Plant-Beneficial Strain Pseudomonas putida WCS358. Applied and Environmental Microbiology, 2012, 78, 726-734.	3.1	13
119	The spent culture supernatant of Pseudomonas syringae contains azelaic acid. BMC Microbiology, 2018, 18, 199.	3.3	13
120	A call to arms for cell–cell interactions between bacteria in the plant microbiome. Trends in Plant Science, 2021, 26, 1126-1132.	8.8	13
121	Ribosomal Protein S1 Specifically Binds to the 5′ Untranslated Region of the Pseudomonas aeruginosa Stationary-Phase Sigma Factor rpoS mRNA in the Logarithmic Phase of Growth. Journal of Bacteriology, 2004, 186, 4903-4909.	2.2	12
122	Identification of Loci of <i>Pseudomonas syringae</i> pv. <i>actinidiae</i> Involved in Lipolytic Activity and Their Role in Colonization of Kiwifruit Leaves. Phytopathology, 2017, 107, 645-653.	2.2	12
123	Study of the Regulatory Role of N-Acyl Homoserine Lactones Mediated Quorum Sensing in the Biological Activity of Burkholderia gladioli pv. agaricicola Causing Soft Rot of Agaricus spp Frontiers in Microbiology, 2019, 10, 2695.	3.5	12
124	A versatile plasmid biosensor useful to identify quorum sensing LuxR-family orphans in bacterial strains. Journal of Microbiological Methods, 2008, 73, 273-275.	1.6	11
125	Shortening of the Lactobacillus paracasei subsp. paracasei BGNJ1-64 AggLb Protein Switches Its Activity from Auto-aggregation to Biofilm Formation. Frontiers in Microbiology, 2016, 7, 1422.	3.5	11
126	TheBurkholderia cepaciarpoEgene is not involved in exopolysaccharide production and onion pathogenicity. Canadian Journal of Microbiology, 2006, 52, 260-265.	1.7	10

#	Article	IF	CITATIONS
127	Chromosomal Arrangement of AHL-Driven Quorum Sensing Circuits in <i>Pseudomonas</i> , 2012, 2012, 1-6.		10
128	Controlled specific expression and purification of $6\tilde{A}f\hat{A}$ —His-tagged proteins inPseudomonas. FEMS Microbiology Letters, 1999, 179, 101-106.	1.8	8
129	5′ untranslated region of the Pseudomonas putida WCS358 stationary phase sigma factor rpoS mRNA is involved in RpoS translational regulation. Journal of Microbiology, 2008, 46, 56-61.	2.8	8
130	Draft Genome Sequence of Erwinia toletana, a Bacterium Associated with Olive Knots Caused by Pseudomonas savastanoi pv. Savastanoi. Genome Announcements, 2013, 1, .	0.8	8
131	LuxR Solos in the Plant Endophyte <i>Kosakonia</i> sp. Strain KO348. Applied and Environmental Microbiology, 2020, 86, .	3.1	8
132	LuxR Solos from Environmental Fluorescent Pseudomonads. MSphere, 2021, 6, .	2.9	8
133	AiiA lactonase disrupts N-acylhomoserine lactone and attenuates quorum-sensing-related virulence in Pectobacterium carotovorum EMPCC. Annals of Microbiology, 2013, 63, 691-697.	2.6	7
134	Draft Genome Sequence of a Hypersensitive Reaction-Inducing Pantoea agglomerans Strain Isolated from Olive Knots Caused by Pseudomonas savastanoi pv. savastanoi. Genome Announcements, 2014, 2, .	0.8	7
135	Studies on synthetic LuxR solo hybrids. Frontiers in Cellular and Infection Microbiology, 2015, 5, 52.	3.9	7
136	Isolation and Characterization of Pseudomonas chlororaphis Strain ST9; Rhizomicrobiota and in Planta Studies. Plants, 2021, 10, 1466.	3.5	7
137	AzeR, a transcriptional regulator that responds to azelaic acid in Pseudomonas nitroreducens. Microbiology (United Kingdom), 2020, 166, 73-84.	1.8	7
138	Methods to Study Solo/Orphan Quorum-Sensing Receptors. Methods in Molecular Biology, 2018, 1673, 145-159.	0.9	6
139	Syringopeptin Contributes to the Virulence of Pseudomonas fuscovaginae, Based on sypA Biosynthesis Mutant Analysis. Phytopathology, 2020, 110, 780-789.	2.2	6
140	Inducible expression of choline sulfatase and its regulator BetR in Pseudomonas sp. ATCC19151. Archives of Microbiology, 2011, 193, 399-405.	2.2	5
141	Draft Genome Sequence of Erwinia oleae, a Bacterium Associated with Olive Knots Caused by Pseudomonas savastanoi pv. savastanoi. Genome Announcements, 2014, 2, .	0.8	5
142	Application of Chemical Genomics to Plant–Bacteria Communication: A High-Throughput System to Identify Novel Molecules Modulating the Induction of Bacterial Virulence Genes by Plant Signals. Methods in Molecular Biology, 2017, 1610, 297-314.	0.9	5
143	Bacterial Endophytes Contribute to Rice Seedling Establishment Under Submergence. Frontiers in Plant Science, 0, 13, .	3.6	5
144	Modeling bacterial quorum sensing in open and closed environments: potential discrepancies between agar plate and culture flask experiments. Journal of Molecular Modeling, 2014, 20, 2248.	1.8	4

#	Article	IF	CITATIONS
145	Amplification of the groESL operon in Pseudomonas putida increases siderophore gene promoter activity. Molecular Genetics and Genomics, 1994, 245, 126-132.	2.4	3
146	Draft Genome Sequence of Beneficial Rice Rhizosphere Isolate Pseudomonas aeruginosa PUPa3. Genome Announcements, $2014, 2, .$	0.8	3
147	Many plant pathogenic Pseudomonas savastanoi pv glycinea isolates possess an inactive quorum sensing ahlR gene via a point mutation. FEMS Microbiology Letters, 2019, 366, .	1.8	3
148	Production of glycosylated thermostable penicillin G amidase in. FEMS Yeast Research, 2002, 1, 271-277.	2.3	2
149	A new laser device for ultra-rapid and sustainable aerosol sterilization. Environment International, 2022, 164, 107272.	10.0	2
150	Copper sulfate inhibition of quorum sensing in Pseudomonas capeferrum is dependent on biotic interactions. Rhizosphere, 2021, , 100434.	3.0	1
151	Compiling Extracytoplasmic Function (ECF) Sigma Factors Regulated Promoters in Pseudomonas. , 2004, , 345-363.		1
152	Rice bacterial endophytes: isolation of a collection, identification of beneficial strains and microbiome analysis. Environmental Microbiology, 2016, , $n/a-n/a$.	3.8	0