
Tim W Gilberger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6207513/publications.pdf Version: 2024-02-01

TIM W CUREDCED

#	Article	IF	CITATIONS
1	A non-reactive natural product precursor of the duocarmycin family has potent and selective antimalarial activity. Cell Chemical Biology, 2022, 29, 840-853.e6.	5.2	2
2	N-terminal phosphorylation regulates the activity of glycogen synthase kinase 3 from <i>Plasmodium falciparum</i> . Biochemical Journal, 2022, 479, 337-356.	3.7	2
3	Cell biological analysis reveals an essential role for Pfcerli2 in erythrocyte invasion by malaria parasites. Communications Biology, 2022, 5, 121.	4.4	7
4	PMRT1, a <i>Plasmodium</i> -Specific Parasite Plasma Membrane Transporter, Is Essential for Asexual and Sexual Blood Stage Development. MBio, 2022, 13, e0062322.	4.1	7
5	High Content Analysis of Macrophage-Targeting EhPlb-Compounds against Cutaneous and Visceral Leishmania Species. Microorganisms, 2021, 9, 422.	3.6	5
6	Common virulence gene expression in adult first-time infected malaria patients and severe cases. ELife, 2021, 10, .	6.0	20
7	Identification of novel inner membrane complex and apical annuli proteins of the malaria parasite <scp> <i>Plasmodium falciparum</i> </scp> . Cellular Microbiology, 2021, 23, e13341.	2.1	19
8	The Ins and Outs of Plasmodium Rhoptries, Focusing on the Cytosolic Side. Trends in Parasitology, 2021, 37, 638-650.	3.3	8
9	CRISPR/Cas9-engineered inducible gametocyte producer lines as a valuable tool for Plasmodium falciparum malaria transmission research. Nature Communications, 2021, 12, 4806.	12.8	32
10	Synthesis and Antiplasmodial Activity of Bisindolylcyclobutenediones. Molecules, 2021, 26, 4739.	3.8	4
11	Characterization of Apicomplexan Amino Acid Transporters (ApiATs) in the Malaria Parasite Plasmodium falciparum. MSphere, 2021, 6, e0074321.	2.9	9
12	The parasitophorous vacuole nutrient channel is critical for drug access in malaria parasites and modulates the artemisinin resistance fitness cost. Cell Host and Microbe, 2021, 29, 1774-1787.e9.	11.0	21
13	Structural Insights Into PfARO and Characterization of its Interaction With PfAIP. Journal of Molecular Biology, 2020, 432, 878-896.	4.2	21
14	The ZIP Code of Vesicle Trafficking in Apicomplexa: SEC1/Munc18 and SNARE Proteins. MBio, 2020, 11, .	4.1	31
15	Structure-Based Identification and Functional Characterization of a Lipocalin in the Malaria Parasite Plasmodium falciparum. Cell Reports, 2020, 31, 107817.	6.4	23
16	4-Arylthieno[2,3-b]pyridine-2-carboxamides Are a New Class of Antiplasmodial Agents. Molecules, 2020, 25, 3187.	3.8	12
17	PfCERLI1 is a conserved rhoptry associated protein essential for Plasmodium falciparum merozoite invasion of erythrocytes. Nature Communications, 2020, 11, 1411.	12.8	23
18	The Dynamic Roles of the Inner Membrane Complex in the Multiple Stages of the Malaria Parasite. Frontiers in Cellular and Infection Microbiology, 2020, 10, 611801.	3.9	47

TIM W GILBERGER

#	Article	IF	CITATIONS
19	Novel Antimalarial Inhibitors That Specifically Target the Invasion Motor Protein Myosin A in Malaria Parasites. Proceedings (mdpi), 2019, 22, .	0.2	0
20	Dissecting the Gene Expression, Localization, Membrane Topology, and Function of the Plasmodium falciparum STEVOR Protein Family. MBio, 2019, 10, .	4.1	46
21	Cyclic AMP signalling controls key components of malaria parasite host cell invasion machinery. PLoS Biology, 2019, 17, e3000264.	5.6	64
22	Structure–activity relationships in a series of antiplasmodial thieno[2,3-b]pyridines. Malaria Journal, 2019, 18, 89.	2.3	20
23	Hierarchical phosphorylation of apical membrane antigen 1 is required for efficient red blood cell invasion by malaria parasites. Scientific Reports, 2016, 6, 34479.	3.3	31
24	Pellicle formation in the malaria parasite. Journal of Cell Science, 2016, 129, 673-80.	2.0	29
25	The Role of Palmitoylation for Protein Recruitment to the Inner Membrane Complex of the Malaria Parasite. Journal of Biological Chemistry, 2015, 290, 1712-1728.	3.4	66
26	Parasite Calcineurin Regulates Host Cell Recognition and Attachment by Apicomplexans. Cell Host and Microbe, 2015, 18, 49-60.	11.0	77
27	Critical Steps in Protein Export of Plasmodium falciparum Blood Stages. Trends in Parasitology, 2015, 31, 514-525.	3.3	34
28	Regulation of Plasmodium falciparum Development by Calcium-dependent Protein Kinase 7 (PfCDPK7). Journal of Biological Chemistry, 2014, 289, 20386-20395.	3.4	45
29	Identification of New PNEPs Indicates a Substantial Non-PEXEL Exportome and Underpins Common Features in Plasmodium falciparum Protein Export. PLoS Pathogens, 2013, 9, e1003546.	4.7	142
30	<i><i>Plasmodium falciparum</i></i> ATG8 implicated in both autophagy and apicoplast formation. Autophagy, 2013, 9, 1540-1552.	9.1	77
31	Evolution and Architecture of the Inner Membrane Complex in Asexual and Sexual Stages of the Malaria Parasite. Molecular Biology and Evolution, 2012, 29, 2113-2132.	8.9	135
32	Dissection of Minimal Sequence Requirements for Rhoptry Membrane Targeting in the Malaria Parasite. Traffic, 2012, 13, 1335-1350.	2.7	65
33	Uncovering Common Principles in Protein Export of Malaria Parasites. Cell Host and Microbe, 2012, 12, 717-729.	11.0	115
34	Development and host cell modifications of Plasmodium falciparum blood stages in four dimensions. Nature Communications, 2011, 2, 165.	12.8	181
35	Protein export in malaria parasites: do multiple export motifs add up to multiple export pathways?. Trends in Parasitology, 2010, 26, 6-10.	3.3	106
36	Protein Kinase A Dependent Phosphorylation of Apical Membrane Antigen 1 Plays an Important Role in Erythrocyte Invasion by the Malaria Parasite. PLoS Pathogens, 2010, 6, e1000941.	4.7	124

TIM W GILBERGER

#	Article	IF	CITATIONS
37	H2A.Z Demarcates Intergenic Regions of the Plasmodium falciparum Epigenome That Are Dynamically Marked by H3K9ac and H3K4me3. PLoS Pathogens, 2010, 6, e1001223.	4.7	201
38	Functional Analysis of the Leading Malaria Vaccine Candidate AMA-1 Reveals an Essential Role for the Cytoplasmic Domain in the Invasion Process. PLoS Pathogens, 2009, 5, e1000322.	4.7	117
39	Sequence requirements for the export of the <i>Plasmodium falciparum</i> Maurer's clefts protein REX2. Molecular Microbiology, 2009, 71, 1003-1017.	2.5	76
40	Spatial dissection of the <i>cis</i> ―and <i>trans</i> â€Golgi compartments in the malaria parasite <i>Plasmodium falciparum</i> . Molecular Microbiology, 2008, 67, 1320-1330.	2.5	38
41	Host-cell invasion by malaria parasites: insights from Plasmodium and Toxoplasma. Trends in Parasitology, 2008, 24, 557-563.	3.3	160
42	A Conserved Molecular Motor Drives Cell Invasion and Gliding Motility across Malaria Life Cycle Stages and Other Apicomplexan Parasites. Journal of Biological Chemistry, 2006, 281, 5197-5208.	3.4	317
43	A Conserved Region in the EBL Proteins Is Implicated in Microneme Targeting of the Malaria ParasitePlasmodium falciparum. Journal of Biological Chemistry, 2006, 281, 31995-32003.	3.4	58
44	Re-defining the Golgi complex in Plasmodium falciparum using the novel Golgi marker PfGRASP. Journal of Cell Science, 2005, 118, 5603-5613.	2.0	88
45	Transfection of the Human Malaria Parasite <1>Plasmodium falciparum<1>., 2004, 270, 263-276.		158
46	The ornithine decarboxylase domain of the bifunctional ornithine decarboxylase/S-adenosylmethionine decarboxylase of Plasmodium falciparum: recombinant expression and catalytic properties of two different constructs. Biochemical Journal, 2000, 352, 287-292.	3.7	22
47	Thioredoxin Reductase from Plasmodium falciparum:  Evidence for Interaction between the C-Terminal Cysteine Residues and the Active Site Disulfideâ^'Dithiol. Biochemistry, 1999, 38, 3187-3196.	2.5	53
48	The role of the C-terminus for catalysis of the large thioredoxin reductase fromPlasmodium falciparum. FEBS Letters, 1998, 425, 407-410.	2.8	41