
Karissa Y Sanbonmatsu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6207470/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Head swivel on the ribosome facilitates translocation by means of intra-subunit tRNA hybrid sites. Nature, 2010, 468, 713-716.	27.8	336
2	SMOG@ctbp: simplified deployment of structure-based models in GROMACS. Nucleic Acids Research, 2010, 38, W657-W661.	14.5	291
3	Simulating movement of tRNA into the ribosome during decoding. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15854-15859.	7.1	260
4	Structure of Met-enkephalin in explicit aqueous solution using replica exchange molecular dynamics. Proteins: Structure, Function and Bioinformatics, 2002, 46, 225-234.	2.6	254
5	Structural architecture of the human long non-coding RNA, steroid receptor RNA activator. Nucleic Acids Research, 2012, 40, 5034-5051.	14.5	237
6	Accommodation of aminoacyl-tRNA into the ribosome involves reversible excursions along multiple pathways. Rna, 2010, 16, 1196-1204.	3.5	174
7	Free State Conformational Sampling of the SAM-I Riboswitch Aptamer Domain. Structure, 2010, 18, 787-797.	3.3	167
8	A G-Rich Motif in the IncRNA Braveheart Interacts with a Zinc-Finger Transcription Factor to Specify the Cardiovascular Lineage. Molecular Cell, 2016, 64, 37-50.	9.7	133
9	COOLAIR Antisense RNAs Form Evolutionarily Conserved Elaborate Secondary Structures. Cell Reports, 2016, 16, 3087-3096.	6.4	132
10	Regulation of the Mammalian Elongation Cycle by Subunit Rolling: A Eukaryotic-Specific Ribosome Rearrangement. Cell, 2014, 158, 121-131.	28.9	125
11	Rise of the RNA Machines: Exploring the Structure of Long Non-Coding RNAs. Journal of Molecular Biology, 2013, 425, 3731-3746.	4.2	124
12	Sizing up long non-coding RNAs: Do lncRNAs have secondary and tertiary structure?. Bioarchitecture, 2012, 2, 189-199.	1.5	121
13	Magnesium Fluctuations Modulate RNA Dynamics in the SAM-I Riboswitch. Journal of the American Chemical Society, 2012, 134, 12043-12053.	13.7	91
14	Excited states of ribosome translocation revealed through integrative molecular modeling. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18943-18948.	7.1	89
15	Tackling Structures of Long Noncoding RNAs. International Journal of Molecular Sciences, 2013, 14, 23672-23684.	4.1	84
16	Cryo-EM of Ribosomal 80S Complexes with Termination Factors Reveals the Translocated Cricket Paralysis Virus IRES. Molecular Cell, 2015, 57, 422-432.	9.7	82
17	Connecting the Kinetics and Energy Landscape of tRNA Translocation on the Ribosome. PLoS Computational Biology, 2013, 9, e1003003.	3.2	79
18	Scaling molecular dynamics beyond 100,000 processor cores for largeâ€scale biophysical simulations. Journal of Computational Chemistry, 2019, 40, 1919-1930.	3.3	79

#	Article	IF	CITATIONS
19	Cryo-EM structure of the small subunit of the mammalian mitochondrial ribosome. Proceedings of the United States of America, 2014, 111, 7284-7289.	7.1	72
20	Functional Role of the Sarcin–Ricin Loop of the 23S rRNA in the Elongation Cycle of Protein Synthesis. Journal of Molecular Biology, 2012, 419, 125-138.	4.2	70
21	Generalized Manning Condensation Model Captures the RNA Ion Atmosphere. Physical Review Letters, 2015, 114, 258105.	7.8	69
22	Stochastic Gating and Drug–Ribosome Interactions. Journal of Molecular Biology, 2009, 386, 648-661.	4.2	66
23	Computational studies of molecular machines: the ribosome. Current Opinion in Structural Biology, 2012, 22, 168-174.	5.7	66
24	Understanding Discrimination by the Ribosome: Stability Testing and Groove Measurement of Codon–Anticodon Pairs. Journal of Molecular Biology, 2003, 328, 33-47.	4.2	65
25	The expression platform and the aptamer: cooperativity between Mg2+ and ligand in the SAM-I riboswitch. Nucleic Acids Research, 2013, 41, 1922-1935.	14.5	57
26	3S: Shotgun secondary structure determination of long non-coding RNAs. Methods, 2013, 63, 170-177.	3.8	56
27	Identification and Characterization of a Class of MALAT1-like Genomic Loci. Cell Reports, 2017, 19, 1723-1738.	6.4	55
28	Zinc-finger protein CNBP alters the 3-D structure of IncRNA Braveheart in solution. Nature Communications, 2020, 11, 148.	12.8	53
29	Energy landscape ofÂtheÂribosomal decoding center. Biochimie, 2006, 88, 1053-1059.	2.6	49
30	Connecting Energy Landscapes with Experimental Rates for Aminoacyl-tRNA Accommodation in the Ribosome. Journal of the American Chemical Society, 2010, 132, 13170-13171.	13.7	48
31	Reduced Model Captures Mg2+-RNA Interaction Free Energy of Riboswitches. Biophysical Journal, 2014, 106, 1508-1519.	0.5	46
32	Mesoscale Modeling Reveals Hierarchical Looping of Chromatin Fibers Near Gene Regulatory Elements. Journal of Physical Chemistry B, 2016, 120, 8642-8653.	2.6	40
33	Tertiary contacts control switching of the SAM-I riboswitch. Nucleic Acids Research, 2011, 39, 2416-2431.	14.5	39
34	Key Intermolecular Interactions in the <i>E. coli</i> 70S Ribosome Revealed by Coarse-Grained Analysis. Journal of the American Chemical Society, 2011, 133, 16828-16838.	13.7	38
35	Consensus among flexible fitting approaches improves the interpretation of cryo-EM data. Journal of Structural Biology, 2012, 177, 561-570.	2.8	38
36	Alignment/misalignment hypothesis forÂtRNA selection byÂtheÂribosome. Biochimie, 2006, 88, 1075-1089.	2.6	35

#	Article	IF	CITATIONS
37	Elongation factor-Tu can repetitively engage aminoacyl-tRNA within the ribosome during the proofreading stage of tRNA selection. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3610-3620.	7.1	31
38	Cryo_fit: Democratization of flexible fitting for cryo-EM. Journal of Structural Biology, 2019, 208, 1-6.	2.8	30
39	Simulating movement of tRNA through the ribosome during hybrid-state formation. Journal of Chemical Physics, 2013, 139, 121919.	3.0	29
40	Towards structural classification of long non-coding RNAs. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 41-45.	1.9	29
41	Magnesium controls aptamer-expression platform switching in the SAM-I riboswitch. Nucleic Acids Research, 2019, 47, 3158-3170.	14.5	26
42	A magnesium-induced triplex pre-organizes the SAM-II riboswitch. PLoS Computational Biology, 2017, 13, e1005406.	3.2	24
43	Tunable Riboregulator Switches for Post-transcriptional Control of Gene Expression. ACS Synthetic Biology, 2015, 4, 1326-1334.	3.8	22
44	Using Molecular Simulation to Model High-Resolution Cryo-EM Reconstructions. Methods in Enzymology, 2015, 558, 497-514.	1.0	21
45	Cooperation between Magnesium and Metabolite Controls Collapse of the SAM-I Riboswitch. Biophysical Journal, 2017, 113, 348-359.	0.5	20
46	Tools for the cryo-EM gold rush: going from the cryo-EM map to the atomistic model. Bioscience Reports, 2017, 37, .	2.4	18
47	Tracking fluctuation hotspots on the yeast ribosome through the elongation cycle. Nucleic Acids Research, 2017, 45, 4958-4971.	14.5	17
48	Large-scale simulations of nucleoprotein complexes: ribosomes, nucleosomes, chromatin, chromosomes and CRISPR. Current Opinion in Structural Biology, 2019, 55, 104-113.	5.7	17
49	Getting to the bottom of IncRNA mechanism: structure–function relationships. Mammalian Genome, 2022, 33, 343-353.	2.2	15
50	Integrating Molecular Dynamics Simulations with Chemical Probing Experiments Using SHAPE-FIT. Methods in Enzymology, 2015, 553, 215-234.	1.0	14
51	Quantitative comparison between sub-millisecond time resolution single-molecule FRET measurements and 10-second molecular simulations of a biosensor protein. PLoS Computational Biology, 2020, 16, e1008293.	3.2	14
52	Four-dimensional chromosome reconstruction elucidates the spatiotemporal reorganization of the mammalian X chromosome. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	13
53	Practical Considerations for Atomistic Structure Modeling with Cryo-EM Maps. Journal of Chemical Information and Modeling, 2020, 60, 2436-2442.	5.4	11
54	Elongation Factor Tu Switch I Element is a Gate for Aminoacyl-tRNA Selection. Journal of Molecular Biology, 2020, 432, 3064-3077.	4.2	11

#	Article	IF	CITATIONS
55	Chelated Magnesium Logic Gate Regulates Riboswitch Pseudoknot Formation. Journal of Physical Chemistry B, 2021, 125, 6479-6490.	2.6	9
56	Functional and Structural Analysis of a Highly-Expressed Yersinia pestis Small RNA following Infection of Cultured Macrophages. PLoS ONE, 2016, 11, e0168915.	2.5	9
57	Dynamics of riboswitches: Molecular simulations. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 1046-1050.	1.9	7
58	Flipping through the Genetic Code: New Developments in Discrimination between Cognate and Near-Cognate tRNAs and the Effect of Antibiotics. Journal of Molecular Biology, 2014, 426, 3197-3200.	4.2	6
59	Stringent Nucleotide Recognition by the Ribosome at the Middle Codon Position. Molecules, 2017, 22, 1427.	3.8	5
60	Hyper-swivel head domain motions are required for complete mRNA-tRNA translocation and ribosome resetting. Nucleic Acids Research, 2022, 50, 8302-8320.	14.5	3
61	Stalking Structure in Plant Long Noncoding RNAs. Methods in Molecular Biology, 2019, 1933, 381-388.	0.9	2
62	Modeling the Influenza A NP-vRNA-Polymerase Complex in Atomic Detail. Biomolecules, 2021, 11, 124.	4.0	2
63	Towards Molecular Mechanism in Long Non-coding RNAs: Linking Structure and Function. Advances in Experimental Medicine and Biology, 2022, 1363, 23-32.	1.6	1
64	Integrative structural studies of the SARS-CoV-2 spike protein during the fusion process (2022). Current Research in Structural Biology, 2022, , .	2.2	0