Tsvi Piran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6206862/publications.pdf

Version: 2024-02-01

		13865	8396
197	22,487	67	147
papers	citations	h-index	g-index
199	199	199	7610
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	What powers the radio emission in TDE AT2019dsg: A long-lived jet or the disruption itself?. Monthly Notices of the Royal Astronomical Society, 2022, 511, 5085-5092.	4.4	12
2	Analytic modelling of synchrotron self-Compton spectra: Application to GRB 190114C. Monthly Notices of the Royal Astronomical Society, 2022, 512, 2142-2153.	4.4	7
3	Nonlinear Evolution of the Magnetorotational Instability in Eccentric Disks. Astrophysical Journal, 2022, 933, 81.	4.5	3
4	Limits on mass outflow from optical tidal disruption events. Monthly Notices of the Royal Astronomical Society, 2021, 502, 3385-3393.	4.4	13
5	Afterglow Constraints on the Viewing Angle of Binary Neutron Star Mergers and Determination of the Hubble Constant. Astrophysical Journal, 2021, 909, 114.	4.5	30
6	Late-time radio observations of the short GRB 200522A: constraints on the magnetar model. Monthly Notices of the Royal Astronomical Society: Letters, 2021, 505, L41-L45.	3.3	11
7	High-energy Emission from Tidal Disruption Events in Active Galactic Nuclei. Astrophysical Journal, 2021, 914, 107.	4.5	11
8	Radio constraint on outflows from tidal disruption events. Monthly Notices of the Royal Astronomical Society, 2021, 507, 4196-4210.	4.4	16
9	GrailQuest: hunting for atoms of space and time hidden in the wrinkle of Space-Time. Experimental Astronomy, 2021, 51, 1255-1297.	3.7	7
10	Bolometric light curves of aspherical shock breakout. Monthly Notices of the Royal Astronomical Society, 2021, 508, 5766-5785.	4.4	14
11	The Impact of Shocks on the Vertical Structure of Eccentric Disks. Astrophysical Journal, 2021, 920, 130.	4.5	4
12	Gravitational radiation from accelerating jets. Physical Review D, 2021, 104, .	4.7	7
13	Accurate flux calibration of GW170817: is the X-ray counterpart on the rise?. Monthly Notices of the Royal Astronomical Society, 2021, 510, 1902-1909.	4.4	21
14	GRB Afterglow Parameters in the Era of TeV Observations: The Case of GRB 190114C. Astrophysical Journal, 2021, 923, 135.	4.5	20
15	Radiative Emission Mechanisms. Space Science Reviews, 2020, 216, 1.	8.1	25
16	The origin of hotspots around Sgr A*: orbital or pattern motion?. Monthly Notices of the Royal Astronomical Society, 2020, 497, 2385-2392.	4.4	17
17	Searching for the radio remnants of short-duration gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2020, 500, 1708-1720.	4.4	28
18	Shock within a shock: revisiting the radio flares of NS merger ejecta and gamma-ray burst-supernovae. Monthly Notices of the Royal Astronomical Society, 2020, 495, 4981-4993.	4.4	30

#	Article	IF	CITATIONS
19	On short GRBs similar to GRB 170817A detected by Fermi-GBM. Monthly Notices of the Royal Astronomical Society, 2020, 492, 4283-4290.	4.4	11
20	The Origin of Binary Black Hole Mergers. Astrophysical Journal, 2020, 892, 64.	4.5	11
21	Tidal Disruptions of Main-sequence Stars. IV. Relativistic Effects and Dependence on Black Hole Mass. Astrophysical Journal, 2020, 904, 101.	4.5	19
22	Tidal Disruptions of Main-sequence Stars. II. Simulation Methodology and Stellar Mass Dependence of the Character of Full Tidal Disruptions. Astrophysical Journal, 2020, 904, 99.	4.5	40
23	Tidal Disruptions of Main-sequence Stars. III. Stellar Mass Dependence of the Character of Partial Disruptions. Astrophysical Journal, 2020, 904, 100.	4.5	34
24	Tidal Disruptions of Main-sequence Stars. I. Observable Quantities and Their Dependence on Stellar and Black Hole Mass. Astrophysical Journal, 2020, 904, 98.	4.5	48
25	Light Curves of Tidal Disruption Events in Active Galactic Nuclei. Astrophysical Journal, 2020, 903, 17.	4. 5	13
26	Measuring Stellar and Black Hole Masses of Tidal Disruption Events. Astrophysical Journal, 2020, 904, 73.	4.5	43
27	Tidal Disruptions of Main-sequence Stars. V. The Varieties of Disruptions. Astrophysical Journal, 2020, 904, 68.	4.5	14
28	The Physical Conditions of the Afterglow Implied by MAGIC's Sub-TeV Observations of GRB 190114C. Astrophysical Journal Letters, 2019, 880, L27.	8.3	42
29	The Gravitational waves merger time distribution of binary neutron star systems. Monthly Notices of the Royal Astronomical Society, 2019, 487, 4847-4854.	4.4	59
30	Detectability of neutron star merger afterglows. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2405-2411.	4.4	27
31	Jet-driven bubbles in Fanaroff–Riley type-I sources. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4926-4936.	4.4	3
32	The propagation of choked jet outflows in power-law external media. Monthly Notices of the Royal Astronomical Society, 2019, 489, 2844-2872.	4.4	11
33	Tidal Disruption Events in Active Galactic Nuclei. Astrophysical Journal, 2019, 881, 113.	4.5	45
34	Radio emission from the unbound debris of tidal disruption events. Monthly Notices of the Royal Astronomical Society, 2019, 487, 4083-4092.	4.4	23
35	Generalized compactness limit from an arbitrary viewing angle. Monthly Notices of the Royal Astronomical Society, 2019, 486, 1563-1573.	4.4	29
36	Relativistic Jets in Core-collapse Supernovae. Astrophysical Journal Letters, 2019, 871, L25.	8.3	40

#	Article	IF	Citations
37	Constraints on the emitting region of the gamma-rays observed in GW170817. Monthly Notices of the Royal Astronomical Society, 2019, 483, 1247-1255.	4.4	37
38	Cosmic ray anisotropy from large-scale structure and the effect of magnetic horizons. Monthly Notices of the Royal Astronomical Society, 2019, 484, 4167-4173.	4.4	13
39	Positron flux and \hat{I}^3 -ray emission from Geminga pulsar and pulsar wind nebula. Monthly Notices of the Royal Astronomical Society, 2019, 484, 3491-3501.	4.4	52
40	Who Ordered That? On the Origin of LIGO's Merging Binary Black Holes. , 2019, , 243-257.		0
41	The \hat{I}^3 -rays that accompanied GW170817 and the observational signature of a magnetic jet breaking out of NS merger ejecta. Monthly Notices of the Royal Astronomical Society, 2018, 475, 2971-2977.	4.4	79
42	Neutron star mergers as sites of r-process nucleosynthesis and short gamma-ray bursts. International Journal of Modern Physics D, 2018, 27, 1842005.	2.1	129
43	A mildly relativistic wide-angle outflow in the neutron-star merger event GW170817. Nature, 2018, 554, 207-210.	27.8	283
44	The cocoon emission – an electromagnetic counterpart to gravitational waves from neutron star mergers. Monthly Notices of the Royal Astronomical Society, 2018, 473, 576-584.	4.4	142
45	Physics of the saturation of particle acceleration in relativistic magnetic reconnection. Monthly Notices of the Royal Astronomical Society, 2018, 476, 3902-3912.	4.4	17
46	Magnetorotational Instability in Eccentric Disks. Astrophysical Journal, 2018, 856, 12.	4.5	21
47	Detecting Black Hole Binaries by Gaia. Astrophysical Journal, 2018, 861, 21.	4.5	47
48	Synchrotron Radiation from the Fast Tail of Dynamical Ejecta of Neutron Star Mergers. Astrophysical Journal, 2018, 867, 95.	4.5	92
49	From \hat{I}^3 to Radio: The Electromagnetic Counterpart of GW170817. Astrophysical Journal, 2018, 867, 18.	4.5	66
50	Implications of the radio and X-ray emission that followed GW170817. Monthly Notices of the Royal Astronomical Society, 2018, 478, 407-415.	4.4	64
51	THE OBSERVABLE SIGNATURES OF GRB COCOONS. Astrophysical Journal, 2017, 834, 28.	4.5	140
52	Probing the Extragalactic Cosmic-Ray Origin with Gamma-Ray and Neutrino Backgrounds. Astrophysical Journal Letters, 2017, 839, L22.	8.3	16
53	Constraints on the bulk Lorentz factor of gamma-ray burst jets from <i>Fermi</i> /i>/LAT upper limits. Monthly Notices of the Royal Astronomical Society, 2017, 465, 811-819.	4.4	15
54	Implications of the Low Binary Black Hole Aligned Spins Observed by LIGO. Astrophysical Journal, 2017, 842, 111.	4.5	58

#	Article	IF	Citations
55	Evolution of Supernova Remnants Near the Galactic Center. Astrophysical Journal, 2017, 838, 12.	4.5	4
56	Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger. Nature, 2017, 551, 67-70.	27.8	715
57	Illuminating gravitational waves: A concordant picture of photons from a neutron star merger. Science, 2017, 358, 1559-1565.	12.6	559
58	A radio counterpart to a neutron star merger. Science, 2017, 358, 1579-1583.	12.6	390
59	Optical Follow-up of Gravitational-wave Events with Las Cumbres Observatory. Astrophysical Journal Letters, 2017, 848, L33.	8.3	80
60	Reconciling the diffuse Galactic \hat{l}^3 -ray and the cosmic ray spectra. Monthly Notices of the Royal Astronomical Society, 2017, 466, 3674-3681.	4.4	12
61	The Extragalactic Ultra-high-energy Cosmic-Ray Dipole. Astrophysical Journal Letters, 2017, 850, L25.	8.3	17
62	Analytic heating rate of neutron star merger ejecta derived from Fermi's theory of beta decay. Monthly Notices of the Royal Astronomical Society, 2017, 468, 91-96.	4.4	32
63	Electron-capture Isotopes Could Constrain Cosmic-Ray Propagation Models. Astrophysical Journal, 2017, 851, 109.	4.5	1
64	Observational evidence for mass ejection accompanying short gamma-ray bursts. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 472, L55-L59.	3.3	28
65	Short-Lived ²⁴⁴ Pu Points to Neutron Star Binary Mergers as Sites for r-Process Nucleosynthesis., 2017,,.		2
66	TESTING THE MAGNETAR MODEL VIA LATE-TIME RADIO OBSERVATIONS OF TWO MACRONOVA CANDIDATES. Astrophysical Journal Letters, 2016, 819, L22.	8.3	55
67	Prospects for the Discovery of Black Hole Binaries without Mass Accretion with Gaia. Proceedings of the International Astronomical Union, 2016, 12, 41-42.	0.0	1
68	THE B/C AND SUB-IRON/IRON COSMIC RAY RATIOS—FURTHER EVIDENCE IN FAVOR OF THE SPIRAL-ARM DIFFUSION MODEL. Astrophysical Journal, 2016, 826, 47.	4.5	9
69	RADIO COUNTERPARTS OF COMPACT BINARY MERGERS DETECTABLE IN GRAVITATIONAL WAVES: A SIMULATION FOR AN OPTIMIZED SURVEY. Astrophysical Journal, 2016, 831, 190.	4.5	62
70	ARE ULTRA-LONG GAMMA-RAY BURSTS CAUSED BY BLUE SUPERGIANT COLLAPSARS, NEWBORN MAGNETARS, OR WHITE DWARF TIDAL DISRUPTION EVENTS?. Astrophysical Journal, 2016, 833, 110.	4.5	31
71	THE EFFECT OF COOLING ON PARTICLE TRAJECTORIES AND ACCELERATION IN RELATIVISTIC MAGNETIC RECONNECTION. Astrophysical Journal, 2016, 833, 155.	4.5	11
72	r-PROCESS PRODUCTION SITES AS INFERRED FROM Eu ABUNDANCES IN DWARF GALAXIES. Astrophysical Journal, 2016, 832, 149.	4.5	62

#	Article	IF	CITATIONS
73	Radioactive decay products in neutron star merger ejecta: heating efficiency and \hat{l}^3 -ray emission. Monthly Notices of the Royal Astronomical Society, 2016, 459, 35-43.	4.4	84
74	The dynamics of radiation-driven, optically thick winds. Monthly Notices of the Royal Astronomical Society, 2016, 459, 171-177.	4.4	14
75	BEAMING OF PARTICLES AND SYNCHROTRON RADIATION IN RELATIVISTIC MAGNETIC RECONNECTION. Astrophysical Journal, 2016, 826, 221.	4.5	25
76	ASASSN-14li: A MODEL TIDAL DISRUPTION EVENT. Astrophysical Journal, 2016, 827, 127.	4.5	82
77	Maximal efficiency of the collisional Penrose process. Physical Review D, 2016, 93, .	4.7	38
78	Cosmic Explosions, Life in the Universe, and the Cosmological Constant. Physical Review Letters, 2016, 116, 081301.	7.8	14
79	The quantum interaction of macroscopic objects and gravitons. International Journal of Modern Physics D, 2016, 25, 1644020.	2.1	1
80	The Macronova in GRB 050709 and the GRB-macronova connection. Nature Communications, 2016, 7, 12898.	12.8	157
81	NATAL KICKS AND TIME DELAYS IN MERGING NEUTRON STAR BINARIES: IMPLICATIONS FOR r-PROCESS NUCLEOSYNTHESIS IN ULTRA-FAINT DWARFS AND IN THE MILKY WAY. Astrophysical Journal Letters, 2016, 829, L13.	8.3	64
82	Particle acceleration, magnetization and radiation in relativistic shocks. Monthly Notices of the Royal Astronomical Society, 2016, 460, 2036-2049.	4.4	22
83	Formation of double neutron star systems as implied by observations. Monthly Notices of the Royal Astronomical Society, 2016, 456, 4089-4099.	4.4	110
84	Linear and circular polarization in ultra-relativistic synchrotron sources – implications to GRB afterglows. Monthly Notices of the Royal Astronomical Society, 2016, 455, 1594-1606.	4.4	18
85	Energies of GRB blast waves and prompt efficiencies as implied by modelling of X-ray and GeV afterglows. Monthly Notices of the Royal Astronomical Society, 2015, 454, 1073-1085.	4.4	104
86	The rate, luminosity function and time delay of non-Collapsar short GRBs. Monthly Notices of the Royal Astronomical Society, 2015, 448, 3026-3037.	4.4	221
87	The fate of supernova remnants near quiescent supermassive black holes. Monthly Notices of the Royal Astronomical Society, 2015, 447, 3096-3114.	4.4	11
88	Spectral signatures of compact sources in the inverse Compton catastrophe limit. Monthly Notices of the Royal Astronomical Society, 2015, 452, 3226-3245.	4.4	8
89	Gamma-Ray Bursts as Sources of Strong Magnetic Fields. Space Science Reviews, 2015, 191, 471-518.	8.1	31
90	GRB 131014A: A LABORATORY FOR STUDYING THE THERMAL-LIKE AND NON-THERMAL EMISSIONS IN GAMMA-RAY BURSTS, AND THE NEW $ \{L\}_{\{m\{i\}}\}^{mathrm\{nTh}\}-\{E\}_{\{mathrm\{peak\},\{m\{i\}\}}^{mathrm\{nTh},mathrm\{rest\}\}\} $ RELATION. Astrophysical Journal, 2015, 814, 10.	4.5	38

#	Article	IF	Citations
91	A Planck-scale limit on spacetime fuzziness and stochastic Lorentz invariance violation. Nature Physics, 2015, 11, 344-346.	16.7	60
92	Mass ejection from neutron star mergers: different components and expected radio signals. Monthly Notices of the Royal Astronomical Society, 2015, 450, 1430-1440.	4.4	102
93	DISK FORMATION VERSUS DISK ACCRETION—WHAT POWERS TIDAL DISRUPTION EVENTS?. Astrophysical Journal, 2015, 806, 164.	4.5	217
94	Radio flares of compact binary mergers: the effect of non-trivial outflow geometry. Monthly Notices of the Royal Astronomical Society, 2015, 452, 3419-3434.	4.4	23
95	ICECUBE NEUTRINOS AND LORENTZ INVARIANCE VIOLATION. Astrophysical Journal, 2015, 806, 269.	4.5	31
96	The afterglow of a relativistic shock breakout and low-luminosity GRBs. Monthly Notices of the Royal Astronomical Society, 2015, 448, 417-428.	4.4	37
97	GENERAL RELATIVISTIC HYDRODYNAMIC SIMULATION OF ACCRETION FLOW FROM A STELLAR TIDAL DISRUPTION. Astrophysical Journal, 2015, 804, 85.	4.5	232
98	Jet and disc luminosities in tidal disruption events. Monthly Notices of the Royal Astronomical Society, 2015, 453, 157-165.	4.4	37
99	A possible macronova in the late afterglow of the long–short burst GRB 060614. Nature Communications, 2015, 6, 7323.	12.8	224
100	Short-lived 244Pu points to compact binary mergers as sites for heavy r-process nucleosynthesis. Nature Physics, 2015, 11, 1042-1042.	16.7	116
101	The long-term evolution of neutron star merger remnants - I. The impact of r-process nucleosynthesis. Monthly Notices of the Royal Astronomical Society, 2014, 439, 744-756.	4.4	219
102	The emission mechanism in magnetically dominated gamma-ray burst outflows. Monthly Notices of the Royal Astronomical Society, 2014, 445, 3892-3907.	4.4	48
103	The dynamics of a highly magnetized jet propagating inside a star. Monthly Notices of the Royal Astronomical Society, 2014, 443, 1532-1548.	4.4	43
104	Possible Role of Gamma Ray Bursts on Life Extinction in the Universe. Physical Review Letters, 2014, 113, 231102.	7.8	56
105	RECOVERING THE OBSERVED B/C RATIO IN A DYNAMIC SPIRAL-ARMED COSMIC RAY MODEL. Astrophysical Journal, 2014, 782, 34.	4.5	20
106	The long-term evolution of neutron star merger remnants – II. Radioactively powered transients. Monthly Notices of the Royal Astronomical Society, 2014, 439, 757-770.	4.4	188
107	Binary pulsar J0737â^'3039 – evidence for a new core collapse and neutron star formation mechanism. Monthly Notices of the Royal Astronomical Society, 2014, 438, 1005-1013.	4.4	14
108	The multimessenger picture of compact object encounters: binary mergers versus dynamical collisions. Monthly Notices of the Royal Astronomical Society, 2013, 430, 2585-2604.	4.4	168

#	Article	IF	Citations
109	The electromagnetic signals of compact binary mergers. Monthly Notices of the Royal Astronomical Society, 2013, 430, 2121-2136.	4.4	220
110	RADIUS CONSTRAINTS AND MINIMAL EQUIPARTITION ENERGY OF RELATIVISTICALLY MOVING SYNCHROTRON SOURCES. Astrophysical Journal, 2013, 772, 78.	4.5	53
111	CONSTRAINTS ON THE SYNCHROTRON EMISSION MECHANISM IN GAMMA-RAY BURSTS. Astrophysical Journal, 2013, 769, 69.	4.5	68
112	ON THE ORIGIN OF THE RADIO EMISSION OF Sw 1644+57. Astrophysical Journal, 2013, 770, 146.	4.5	26
113	Gravitational wave memory from gamma ray bursts' jets. Physical Review D, 2013, 87, .	4.7	16
114	SHORT VERSUS LONG AND COLLAPSARS VERSUS NON-COLLAPSARS: A QUANTITATIVE CLASSIFICATION OF GAMMA-RAY BURSTS. Astrophysical Journal, 2013, 764, 179.	4.5	169
115	The long, the short and the weak: the origin of gamma-rayÂbursts. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120273.	3.4	10
116	The Swift short gamma-ray burst rate density: implications for binary neutron star merger rates. Monthly Notices of the Royal Astronomical Society, 2012, 425, 2668-2673.	4.4	108
117	Collisional Penrose Process near the Horizon of Extreme Kerr Black Holes. Physical Review Letters, 2012, 109, 121101.	7.8	101
118	Prompt emission from gamma-ray bursts. , 2012, , 121-150.		2
119	AN OBSERVATIONAL IMPRINT OF THE COLLAPSAR MODEL OF LONG GAMMA-RAY BURSTS. Astrophysical Journal, 2012, 749, 110.	4.5	95
120	JETS FROM TIDAL DISRUPTIONS OF STARS BY BLACK HOLES. Astrophysical Journal, 2012, 749, 92.	4.5	48
121	Variability in blazars: clues from PKS 2155â^'304. Monthly Notices of the Royal Astronomical Society, 2012, 420, 604-612.	4.4	90
122	On the lateral expansion of gamma-ray burst jets. Monthly Notices of the Royal Astronomical Society, 2012, , no-no.	4.4	41
123	GAMMA-RAY BURSTS AS RELATIVISTIC OBJECTS., 2012, , .		1
124	SWIFT J1644+57: A WHITE DWARF TIDALLY DISRUPTED BY A 10 ⁴ <i>M</i> _{â~%} BLACK HOLE?. Astrophysical Journal, 2011, 743, 134.	4.5	91
125	THE PROPAGATION OF RELATIVISTIC JETS IN EXTERNAL MEDIA. Astrophysical Journal, 2011, 740, 100.	4.5	257
126	ARE LOW-LUMINOSITY GAMMA-RAY BURSTS GENERATED BY RELATIVISTIC JETS?. Astrophysical Journal Letters, 2011, 739, L55.	8.3	132

#	Article	IF	Citations
127	Detectable radio flares following gravitational waves from mergers of binary neutron stars. Nature, 2011, 478, 82-84.	27.8	312
128	THE COLLIMATION AND ENERGETICS OF THE BRIGHTEST <i>SWIFT</i> GAMMA-RAY BURSTS. Astrophysical Journal, 2010, 711, 641-654.	4.5	110
129	Modifications to Lorentz invariant dispersion in relatively boosted frames. Physical Review D, 2010, 82,	4.7	53
130	ON THE EXTERNAL SHOCK SYNCHROTRON MODEL FOR GAMMA-RAY BURSTS' GeV EMISSION. Astrophysical Journal Letters, 2010, 718, L63-L67.	8.3	80
131	GAMMA-RAY BURST LIGHT CURVES IN THE RELATIVISTIC TURBULENCE AND RELATIVISTIC SUBJET MODELS. Astrophysical Journal, 2009, 695, L10-L14.	4.5	66
132	Inhomogeneity in Cosmic Ray Sources as the Origin of the Electron Spectrum and the PAMELA Anomaly. Physical Review Letters, 2009, 103, 111302.	7.8	91
133	High-energy γ-ray emission from gamma-ray bursts — before GLAST. Frontiers of Physics in China, 2008, 3, 306-330.	1.0	65
134	High-energy afterglow emission from gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2008, 384, 1483-1501.	4.4	90
135	The Metamorphosis of Supernova SN 2008D/XRF 080109: A Link Between Supernovae and GRBs/Hypernovae. Science, 2008, 321, 1185-1188.	12.6	191
136	Central engine afterglow of Gamma-ray Bursts. AIP Conference Proceedings, 2008, , .	0.4	2
137	Lorentz-violation-induced arrival delays of cosmological particles. Journal of Cosmology and Astroparticle Physics, 2008, 2008, 031.	5. 4	143
138	Gamma-ray burst theory after Swift. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365, 1151-1162.	3.4	10
139	Neutrinos from gamma-ray bursts as a tool to explore quantum-gravity-induced Lorentz violation. Nature Physics, 2007, 3, 87-90.	16.7	114
140	The BATSE-Swift luminosity and redshift distributions of Ashort-duration GRBs. Astronomy and Astrophysics, 2006, 453, 823-828.	5.1	106
141	Relativistic ejecta from X-ray flash XRF 060218 and the rate of cosmic explosions. Nature, 2006, 442, 1014-1017.	27.8	422
142	The rate and luminosity function of Short GRBs. AIP Conference Proceedings, 2006, , .	0.4	1
143	Pure and Loaded Fireballs in Soft Gammaâ€Ray Repeater Giant Flares. Astrophysical Journal, 2005, 635, 516-521.	4.5	59
144	The afterglow of GRB 050709 and the nature of the short-hard Î ³ -ray bursts. Nature, 2005, 437, 845-850.	27.8	430

#	Article	IF	CITATIONS
145	The luminosity and redshift distributions of short-duration GRBs. Astronomy and Astrophysics, 2005, 435, 421-426.	5.1	91
146	Origin of the Binary Pulsar J0737-3039B. Physical Review Letters, 2005, 94, 051102.	7.8	88
147	The physics of gamma-ray bursts. Reviews of Modern Physics, 2005, 76, 1143-1210.	45.6	1,325
148	Some Recent Peculiarities of the Early Afterglow. AIP Conference Proceedings, 2004, , .	0.4	2
149	The apparent size of gamma-ray burst afterglows as a test of the fireball model. Monthly Notices of the Royal Astronomical Society, 2004, 353, L35-L40.	4.4	33
150	GAMMA-RAY BURSTS - A PRIMER FOR RELATIVISTS. , 2002, , .		3
151	GAMMA-RAY BURSTS. International Journal of Modern Physics A, 2002, 17, 2727-2731.	1.5	5
152	ASTRONOMY: Demotion Looms for Gamma-Ray Bursts. Science, 2002, 295, 986-987.	12.6	3
153	The Detectability of Orphan Afterglows. Astrophysical Journal, 2002, 579, 699-705.	4.5	104
154	Postâ€Newtonian Smoothed Particle Hydrodynamics. Astrophysical Journal, 2001, 550, 846-859.	4.5	37
155	Tidal Disruption of a Solarâ€Type Star by a Supermassive Black Hole. Astrophysical Journal, 2000, 545, 772-780.	4. 5	131
156	A case devoid of bias: Optical Redshift Survey voids versus IRAS voids. Monthly Notices of the Royal Astronomical Society, 2000, 313, 553-558.	4.4	33
157	Gamma-ray bursts – a puzzle being resolved. Physics Reports, 2000, 333-334, 529-553.	25.6	185
158	Essay: Cosmic Censorship: The Role of Quantum Gravity. General Relativity and Gravitation, 2000, 32, 2333-2338.	2.0	24
159	The Eighth Marcel Grossmann Meeting. , 1999, , .		1
160	Synchrotron Selfâ€Absorption in Gammaâ€Ray Burst Afterglow. Astrophysical Journal, 1999, 527, 236-246.	4. 5	136
161	Gamma-ray bursts and the fireball model. Physics Reports, 1999, 314, 575-667.	25.6	1,208
162	The afterglow, redshift and extreme energetics of the \hat{I}^3 -ray burst of 23 January 1999. Nature, 1999, 398, 389-394.	27.8	374

#	Article	IF	Citations
163	The Rapidly Fading Optical Afterglow of GRB 980519. Astrophysical Journal, 1999, 517, L105-L108.	4.5	57
164	Jets in Gamma-Ray Bursts. Astrophysical Journal, 1999, 519, L17-L20.	4.5	826
165	Implications of the Visible and X-Ray Counterparts to GRB 970228. Physical Review Letters, 1998, 80, 1580-1581.	7.8	22
166	The implications of direct red-shift measurement of $\hat{l}^3\text{-ray}$ bursts. , 1998, , .		0
167	What have we learned from GRB afterglows?. , 1998, , .		0
168	Can internal shocks produce the variability in GRBs?. , 1998, , .		1
169	Spectra and Light Curves of Gamma-Ray Burst Afterglows. Astrophysical Journal, 1998, 497, L17-L20.	4.5	1,779
170	Cosmological gamma-ray bursts: internal versus external shocks. Monthly Notices of the Royal Astronomical Society, 1997, 287, 110-116.	4.4	113
171	The X-ray background as a probe of density fluctuations at high redshift. Monthly Notices of the Royal Astronomical Society, 1997, 284, 499-506.	4.4	24
172	A catalogue of the voids in the IRAS 1.2- Jy survey. Monthly Notices of the Royal Astronomical Society, 1997, 287, 790-798.	4.4	44
173	Can Internal Shocks Produce the Variability in Gammaâ€Ray Bursts?. Astrophysical Journal, 1997, 490, 92-98.	4.5	440
174	The Signature of a Correlation between Cosmicâ€Ray Sources above 1019eV and Largeâ€Scale Structure. Astrophysical Journal, 1997, 483, 1-7.	4.5	67
175	Variability in Gammaâ€Ray Bursts: A Clue. Astrophysical Journal, 1997, 485, 270-273.	4.5	287
176	Possible Evidence for Relativistic Shocks in Gammaâ€Ray Bursts. Astrophysical Journal, 1997, 488, 330-337.	4.5	83
177	A simultaneous spectral invariant analysis of the GRB count distribution and time dilation. AIP Conference Proceedings, 1996, , .	0.4	0
178	Gamma-Ray Bursts and Binary Neutron Star Mergers. Symposium - International Astronomical Union, 1996, 165, 489-502.	0.1	1
179	Cooling Timescales and Temporal Structure of Gammaâ€Ray Bursts. Astrophysical Journal, 1996, 473, 204-218.	4.5	195
180	Relativity at action or gamma-ray Bursts. General Relativity and Gravitation, 1996, 28, 1421-1426.	2.0	6

#	Article	lF	CITATIONS
181	Gamma-ray bursts from neutron star mergers. AIP Conference Proceedings, 1994, , .	0.4	3
182	Fireballs. AIP Conference Proceedings, 1994, , .	0.4	5
183	Merging neutron stars. 1. Initial results for coalescence of noncorotating systems. Astrophysical Journal, 1994, 431, 742.	4.5	131
184	Hydrodynamics of relativistic fireballs. Monthly Notices of the Royal Astronomical Society, 1993, 263, 861-867.	4.4	195
185	Gravitational Waves and gamma -Ray Bursts. Astrophysical Journal, 1993, 417, L17.	4.5	128
186	Gamma-ray bursts as the death throes of massive binary stars. Astrophysical Journal, 1992, 395, L83.	4.5	1,071
187	The appearance of cosmic fireballs. Astrophysical Journal, 1990, 365, L55.	4.5	248
188	Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars. Nature, 1989, 340, 126-128.	27.8	1,623
189	Shells and Encounters of Disk Galaxies with Ellipticals. Symposium - International Astronomical Union, 1987, 127, 473-474.	0.1	0
190	A gravitational analogue of Faraday rotation. Nature, 1985, 318, 271-273.	27.8	29
191	Conformally connected universes. General Relativity and Gravitation, 1983, 15, 1077-1083.	2.0	3
192	Gravitational waves and red shifts: A space experiment for testing relativistic gravity using multiple time-correlated radio signals. General Relativity and Gravitation, 1983, 15, 129-163.	2.0	28
193	Can soft Î ³ -ray bursts be emitted by accreting black holes?. Nature, 1975, 256, 112-113.	27.8	5
194	Implications of the early X-ray afterglow light curves of Swift gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 0, 370, 1946-1960.	4.4	115
195	The luminosity function and the rate of Swift's gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 0, , no-no.	4.4	152
196	Elliptical Accretion and Low Luminosity from High Accretion Rate Stellar Tidal Disruption Events. Monthly Notices of the Royal Astronomical Society, 0 , , stx117.	4.4	34
197	A cocoon shock breakout as the origin of the \hat{I}^3 -ray emission in GW170817. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	109