
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6206862/publications.pdf Version: 2024-02-01

Τονι Ρισλη

#	Article	IF	CITATIONS
1	Spectra and Light Curves of Gamma-Ray Burst Afterglows. Astrophysical Journal, 1998, 497, L17-L20.	4.5	1,779
2	Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars. Nature, 1989, 340, 126-128.	27.8	1,623
3	The physics of gamma-ray bursts. Reviews of Modern Physics, 2005, 76, 1143-1210.	45.6	1,325
4	Gamma-ray bursts and the fireball model. Physics Reports, 1999, 314, 575-667.	25.6	1,208
5	Gamma-ray bursts as the death throes of massive binary stars. Astrophysical Journal, 1992, 395, L83.	4.5	1,071
6	Jets in Gamma-Ray Bursts. Astrophysical Journal, 1999, 519, L17-L20.	4.5	826
7	Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger. Nature, 2017, 551, 67-70.	27.8	715
8	Illuminating gravitational waves: A concordant picture of photons from a neutron star merger. Science, 2017, 358, 1559-1565.	12.6	559
9	Can Internal Shocks Produce the Variability in Gammaâ€Ray Bursts?. Astrophysical Journal, 1997, 490, 92-98.	4.5	440
10	The afterglow of GRB 050709 and the nature of the short-hard γ-ray bursts. Nature, 2005, 437, 845-850.	27.8	430
11	Relativistic ejecta from X-ray flash XRF 060218 and the rate of cosmic explosions. Nature, 2006, 442, 1014-1017.	27.8	422
12	A radio counterpart to a neutron star merger. Science, 2017, 358, 1579-1583.	12.6	390
13	The afterglow, redshift and extreme energetics of the Î ³ -ray burst of 23 January 1999. Nature, 1999, 398, 389-394.	27.8	374
14	Detectable radio flares following gravitational waves from mergers of binary neutron stars. Nature, 2011, 478, 82-84.	27.8	312
15	Variability in Gammaâ€Ray Bursts: A Clue. Astrophysical Journal, 1997, 485, 270-273.	4.5	287
16	A mildly relativistic wide-angle outflow in the neutron-star merger event GW170817. Nature, 2018, 554, 207-210.	27.8	283
17	THE PROPAGATION OF RELATIVISTIC JETS IN EXTERNAL MEDIA. Astrophysical Journal, 2011, 740, 100.	4.5	257
18	The appearance of cosmic fireballs. Astrophysical Journal, 1990, 365, L55.	4.5	248

#	Article	IF	CITATIONS
19	GENERAL RELATIVISTIC HYDRODYNAMIC SIMULATION OF ACCRETION FLOW FROM A STELLAR TIDAL DISRUPTION. Astrophysical Journal, 2015, 804, 85.	4.5	232
20	A possible macronova in the late afterglow of the long–short burst GRB 060614. Nature Communications, 2015, 6, 7323.	12.8	224
21	The rate, luminosity function and time delay of non-Collapsar short GRBs. Monthly Notices of the Royal Astronomical Society, 2015, 448, 3026-3037.	4.4	221
22	The electromagnetic signals of compact binary mergers. Monthly Notices of the Royal Astronomical Society, 2013, 430, 2121-2136.	4.4	220
23	The long-term evolution of neutron star merger remnants - I. The impact of r-process nucleosynthesis. Monthly Notices of the Royal Astronomical Society, 2014, 439, 744-756.	4.4	219
24	DISK FORMATION VERSUS DISK ACCRETION—WHAT POWERS TIDAL DISRUPTION EVENTS?. Astrophysical Journal, 2015, 806, 164.	4.5	217
25	Hydrodynamics of relativistic fireballs. Monthly Notices of the Royal Astronomical Society, 1993, 263, 861-867.	4.4	195
26	Cooling Timescales and Temporal Structure of Gammaâ€Ray Bursts. Astrophysical Journal, 1996, 473, 204-218.	4.5	195
27	The Metamorphosis of Supernova SN 2008D/XRF 080109: A Link Between Supernovae and GRBs/Hypernovae. Science, 2008, 321, 1185-1188.	12.6	191
28	The long-term evolution of neutron star merger remnants – II. Radioactively powered transients. Monthly Notices of the Royal Astronomical Society, 2014, 439, 757-770.	4.4	188
29	Gamma-ray bursts – a puzzle being resolved. Physics Reports, 2000, 333-334, 529-553.	25.6	185
30	SHORT VERSUS LONG AND COLLAPSARS VERSUS NON-COLLAPSARS: A QUANTITATIVE CLASSIFICATION OF GAMMA-RAY BURSTS. Astrophysical Journal, 2013, 764, 179.	4.5	169
31	The multimessenger picture of compact object encounters: binary mergers versus dynamical collisions. Monthly Notices of the Royal Astronomical Society, 2013, 430, 2585-2604.	4.4	168
32	The Macronova in GRB 050709 and the GRB-macronova connection. Nature Communications, 2016, 7, 12898.	12.8	157
33	The luminosity function and the rate of Swift's gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 0, , no-no.	4.4	152
34	Lorentz-violation-induced arrival delays of cosmological particles. Journal of Cosmology and Astroparticle Physics, 2008, 2008, 031.	5.4	143
35	The cocoon emission – an electromagnetic counterpart to gravitational waves from neutron star mergers. Monthly Notices of the Royal Astronomical Society, 2018, 473, 576-584.	4.4	142
36	THE OBSERVABLE SIGNATURES OF GRB COCOONS. Astrophysical Journal, 2017, 834, 28.	4.5	140

#	Article	IF	CITATIONS
37	Synchrotron Selfâ€Absorption in Gammaâ€Ray Burst Afterglow. Astrophysical Journal, 1999, 527, 236-246.	4.5	136
38	ARE LOW-LUMINOSITY GAMMA-RAY BURSTS GENERATED BY RELATIVISTIC JETS?. Astrophysical Journal Letters, 2011, 739, L55.	8.3	132
39	Tidal Disruption of a Solarâ€Type Star by a Supermassive Black Hole. Astrophysical Journal, 2000, 545, 772-780.	4.5	131
40	Merging neutron stars. 1. Initial results for coalescence of noncorotating systems. Astrophysical Journal, 1994, 431, 742.	4.5	131
41	Neutron star mergers as sites of r-process nucleosynthesis and short gamma-ray bursts. International Journal of Modern Physics D, 2018, 27, 1842005.	2.1	129
42	Gravitational Waves and gamma -Ray Bursts. Astrophysical Journal, 1993, 417, L17.	4.5	128
43	Short-lived 244Pu points to compact binary mergers as sites for heavy r-process nucleosynthesis. Nature Physics, 2015, 11, 1042-1042.	16.7	116
44	Implications of the early X-ray afterglow light curves of Swift gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 0, 370, 1946-1960.	4.4	115
45	Neutrinos from gamma-ray bursts as a tool to explore quantum-gravity-induced Lorentz violation. Nature Physics, 2007, 3, 87-90.	16.7	114
46	Cosmological gamma-ray bursts: internal versus external shocks. Monthly Notices of the Royal Astronomical Society, 1997, 287, 110-116.	4.4	113
47	THE COLLIMATION AND ENERGETICS OF THE BRIGHTEST <i>SWIFT</i> GAMMA-RAY BURSTS. Astrophysical Journal, 2010, 711, 641-654.	4.5	110
48	Formation of double neutron star systems as implied by observations. Monthly Notices of the Royal Astronomical Society, 2016, 456, 4089-4099.	4.4	110
49	A cocoon shock breakout as the origin of the γ-ray emission in GW170817. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	109
50	The Swift short gamma-ray burst rate density: implications for binary neutron star merger rates. Monthly Notices of the Royal Astronomical Society, 2012, 425, 2668-2673.	4.4	108
51	The BATSE-Swift luminosity and redshift distributions ofÂshort-duration GRBs. Astronomy and Astrophysics, 2006, 453, 823-828.	5.1	106
52	Energies of GRB blast waves and prompt efficiencies as implied by modelling of X-ray and GeV afterglows. Monthly Notices of the Royal Astronomical Society, 2015, 454, 1073-1085.	4.4	104
53	The Detectability of Orphan Afterglows. Astrophysical Journal, 2002, 579, 699-705.	4.5	104
54	Mass ejection from neutron star mergers: different components and expected radio signals. Monthly Notices of the Royal Astronomical Society, 2015, 450, 1430-1440.	4.4	102

#	Article	IF	CITATIONS
55	Collisional Penrose Process near the Horizon of Extreme Kerr Black Holes. Physical Review Letters, 2012, 109, 121101.	7.8	101
56	AN OBSERVATIONAL IMPRINT OF THE COLLAPSAR MODEL OF LONG GAMMA-RAY BURSTS. Astrophysical Journal, 2012, 749, 110.	4.5	95
57	Synchrotron Radiation from the Fast Tail of Dynamical Ejecta of Neutron Star Mergers. Astrophysical Journal, 2018, 867, 95.	4.5	92
58	The luminosity and redshift distributions of short-duration GRBs. Astronomy and Astrophysics, 2005, 435, 421-426.	5.1	91
59	Inhomogeneity in Cosmic Ray Sources as the Origin of the Electron Spectrum and the PAMELA Anomaly. Physical Review Letters, 2009, 103, 111302.	7.8	91
60	SWIFT J1644+57: A WHITE DWARF TIDALLY DISRUPTED BY A 10 ⁴ <i>M</i> _{â~‰} BLACK HOLE?. Astrophysical Journal, 2011, 743, 134.	4.5	91
61	High-energy afterglow emission from gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2008, 384, 1483-1501.	4.4	90
62	Variability in blazars: clues from PKS 2155â~'304. Monthly Notices of the Royal Astronomical Society, 2012, 420, 604-612.	4.4	90
63	Origin of the Binary Pulsar J0737-3039B. Physical Review Letters, 2005, 94, 051102.	7.8	88
64	Radioactive decay products in neutron star merger ejecta: heating efficiency and γ-ray emission. Monthly Notices of the Royal Astronomical Society, 2016, 459, 35-43.	4.4	84
65	Possible Evidence for Relativistic Shocks in Gammaâ€Ray Bursts. Astrophysical Journal, 1997, 488, 330-337.	4.5	83
66	ASASSN-14li: A MODEL TIDAL DISRUPTION EVENT. Astrophysical Journal, 2016, 827, 127.	4.5	82
67	ON THE EXTERNAL SHOCK SYNCHROTRON MODEL FOR GAMMA-RAY BURSTS' GeV EMISSION. Astrophysical Journal Letters, 2010, 718, L63-L67.	8.3	80
68	Optical Follow-up of Gravitational-wave Events with Las Cumbres Observatory. Astrophysical Journal Letters, 2017, 848, L33.	8.3	80
69	The γ-rays that accompanied GW170817 and the observational signature of a magnetic jet breaking out of NS merger ejecta. Monthly Notices of the Royal Astronomical Society, 2018, 475, 2971-2977.	4.4	79
70	CONSTRAINTS ON THE SYNCHROTRON EMISSION MECHANISM IN GAMMA-RAY BURSTS. Astrophysical Journal, 2013, 769, 69.	4.5	68
71	The Signature of a Correlation between Cosmicâ€Ray Sources above 1019eV and Large cale Structure. Astrophysical Journal, 1997, 483, 1-7.	4.5	67
72	GAMMA-RAY BURST LIGHT CURVES IN THE RELATIVISTIC TURBULENCE AND RELATIVISTIC SUBJET MODELS. Astrophysical Journal, 2009, 695, L10-L14.	4.5	66

#	Article	IF	CITATIONS
73	From \hat{I}^3 to Radio: The Electromagnetic Counterpart of GW170817. Astrophysical Journal, 2018, 867, 18.	4.5	66
74	High-energy γ-ray emission from gamma-ray bursts — before GLAST. Frontiers of Physics in China, 2008, 3, 306-330.	1.0	65
75	NATAL KICKS AND TIME DELAYS IN MERGING NEUTRON STAR BINARIES: IMPLICATIONS FOR r-PROCESS NUCLEOSYNTHESIS IN ULTRA-FAINT DWARFS AND IN THE MILKY WAY. Astrophysical Journal Letters, 2016, 829, L13.	8.3	64
76	Implications of the radio and X-ray emission that followed GW170817. Monthly Notices of the Royal Astronomical Society, 2018, 478, 407-415.	4.4	64
77	RADIO COUNTERPARTS OF COMPACT BINARY MERGERS DETECTABLE IN GRAVITATIONAL WAVES: A SIMULATION FOR AN OPTIMIZED SURVEY. Astrophysical Journal, 2016, 831, 190.	4.5	62
78	r-PROCESS PRODUCTION SITES AS INFERRED FROM Eu ABUNDANCES IN DWARF GALAXIES. Astrophysical Journal, 2016, 832, 149.	4.5	62
79	A Planck-scale limit on spacetime fuzziness and stochastic Lorentz invariance violation. Nature Physics, 2015, 11, 344-346.	16.7	60
80	Pure and Loaded Fireballs in Soft Gammaâ€Ray Repeater Giant Flares. Astrophysical Journal, 2005, 635, 516-521.	4.5	59
81	The Gravitational waves merger time distribution of binary neutron star systems. Monthly Notices of the Royal Astronomical Society, 2019, 487, 4847-4854.	4.4	59
82	Implications of the Low Binary Black Hole Aligned Spins Observed by LIGO. Astrophysical Journal, 2017, 842, 111.	4.5	58
83	The Rapidly Fading Optical Afterglow of GRB 980519. Astrophysical Journal, 1999, 517, L105-L108.	4.5	57
84	Possible Role of Gamma Ray Bursts on Life Extinction in the Universe. Physical Review Letters, 2014, 113, 231102.	7.8	56
85	TESTING THE MAGNETAR MODEL VIA LATE-TIME RADIO OBSERVATIONS OF TWO MACRONOVA CANDIDATES. Astrophysical Journal Letters, 2016, 819, L22.	8.3	55
86	Modifications to Lorentz invariant dispersion in relatively boosted frames. Physical Review D, 2010, 82,	4.7	53
87	RADIUS CONSTRAINTS AND MINIMAL EQUIPARTITION ENERGY OF RELATIVISTICALLY MOVING SYNCHROTRON SOURCES. Astrophysical Journal, 2013, 772, 78.	4.5	53
88	Positron flux and γ-ray emission from Geminga pulsar and pulsar wind nebula. Monthly Notices of the Royal Astronomical Society, 2019, 484, 3491-3501.	4.4	52
89	JETS FROM TIDAL DISRUPTIONS OF STARS BY BLACK HOLES. Astrophysical Journal, 2012, 749, 92.	4.5	48
90	The emission mechanism in magnetically dominated gamma-ray burst outflows. Monthly Notices of the Royal Astronomical Society, 2014, 445, 3892-3907.	4.4	48

#	Article	IF	CITATIONS
91	Tidal Disruptions of Main-sequence Stars. I. Observable Quantities and Their Dependence on Stellar and Black Hole Mass. Astrophysical Journal, 2020, 904, 98.	4.5	48
92	Detecting Black Hole Binaries by Gaia. Astrophysical Journal, 2018, 861, 21.	4.5	47
93	Tidal Disruption Events in Active Galactic Nuclei. Astrophysical Journal, 2019, 881, 113.	4.5	45
94	A catalogue of the voids in the IRAS 1.2- Jy survey. Monthly Notices of the Royal Astronomical Society, 1997, 287, 790-798.	4.4	44
95	The dynamics of a highly magnetized jet propagating inside a star. Monthly Notices of the Royal Astronomical Society, 2014, 443, 1532-1548.	4.4	43
96	Measuring Stellar and Black Hole Masses of Tidal Disruption Events. Astrophysical Journal, 2020, 904, 73.	4.5	43
97	The Physical Conditions of the Afterglow Implied by MAGIC's Sub-TeV Observations of GRB 190114C. Astrophysical Journal Letters, 2019, 880, L27.	8.3	42
98	On the lateral expansion of gamma-ray burst jets. Monthly Notices of the Royal Astronomical Society, 2012, , no-no.	4.4	41
99	Relativistic Jets in Core-collapse Supernovae. Astrophysical Journal Letters, 2019, 871, L25.	8.3	40
100	Tidal Disruptions of Main-sequence Stars. II. Simulation Methodology and Stellar Mass Dependence of the Character of Full Tidal Disruptions. Astrophysical Journal, 2020, 904, 99.	4.5	40
101	GRB 131014A: A LABORATORY FOR STUDYING THE THERMAL-LIKE AND NON-THERMAL EMISSIONS IN GAMMA-RAY BURSTS, AND THE NEW $L_{m_{1}}^{0} = 0$ (mathrm{nTh}-{E}_{mathrm{peak},{m{i}}^{m},{mth},mathrm{rest}} RELATION. Astrophysical Journal, 2015, 814, 10.	4.5	38
102	Maximal efficiency of the collisional Penrose process. Physical Review D, 2016, 93, .	4.7	38
103	Postâ€Newtonian Smoothed Particle Hydrodynamics. Astrophysical Journal, 2001, 550, 846-859.	4.5	37
104	The afterglow of a relativistic shock breakout and low-luminosity GRBs. Monthly Notices of the Royal Astronomical Society, 2015, 448, 417-428.	4.4	37
105	Jet and disc luminosities in tidal disruption events. Monthly Notices of the Royal Astronomical Society, 2015, 453, 157-165.	4.4	37
106	Constraints on the emitting region of the gamma-rays observed in GW170817. Monthly Notices of the Royal Astronomical Society, 2019, 483, 1247-1255.	4.4	37
107	Elliptical Accretion and Low Luminosity from High Accretion Rate Stellar Tidal Disruption Events. Monthly Notices of the Royal Astronomical Society, 0, , stx117.	4.4	34
108	Tidal Disruptions of Main-sequence Stars. III. Stellar Mass Dependence of the Character of Partial Disruptions. Astrophysical Journal, 2020, 904, 100.	4.5	34

#	Article	IF	CITATIONS
109	A case devoid of bias: Optical Redshift Survey voids versus IRAS voids. Monthly Notices of the Royal Astronomical Society, 2000, 313, 553-558.	4.4	33
110	The apparent size of gamma-ray burst afterglows as a test of the fireball model. Monthly Notices of the Royal Astronomical Society, 2004, 353, L35-L40.	4.4	33
111	Analytic heating rate of neutron star merger ejecta derived from Fermi's theory of beta decay. Monthly Notices of the Royal Astronomical Society, 2017, 468, 91-96.	4.4	32
112	Gamma-Ray Bursts as Sources of Strong Magnetic Fields. Space Science Reviews, 2015, 191, 471-518.	8.1	31
113	ICECUBE NEUTRINOS AND LORENTZ INVARIANCE VIOLATION. Astrophysical Journal, 2015, 806, 269.	4.5	31
114	ARE ULTRA-LONG GAMMA-RAY BURSTS CAUSED BY BLUE SUPERGIANT COLLAPSARS, NEWBORN MAGNETARS, OR WHITE DWARF TIDAL DISRUPTION EVENTS?. Astrophysical Journal, 2016, 833, 110.	4.5	31
115	Shock within a shock: revisiting the radio flares of NS merger ejecta and gamma-ray burst-supernovae. Monthly Notices of the Royal Astronomical Society, 2020, 495, 4981-4993.	4.4	30
116	Afterglow Constraints on the Viewing Angle of Binary Neutron Star Mergers and Determination of the Hubble Constant. Astrophysical Journal, 2021, 909, 114.	4.5	30
117	A gravitational analogue of Faraday rotation. Nature, 1985, 318, 271-273.	27.8	29
118	Generalized compactness limit from an arbitrary viewing angle. Monthly Notices of the Royal Astronomical Society, 2019, 486, 1563-1573.	4.4	29
119	Gravitational waves and red shifts: A space experiment for testing relativistic gravity using multiple time-correlated radio signals. General Relativity and Gravitation, 1983, 15, 129-163.	2.0	28
120	Observational evidence for mass ejection accompanying short gamma-ray bursts. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 472, L55-L59.	3.3	28
121	Searching for the radio remnants of short-duration gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2020, 500, 1708-1720.	4.4	28
122	Detectability of neutron star merger afterglows. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2405-2411.	4.4	27
123	ON THE ORIGIN OF THE RADIO EMISSION OF Sw 1644+57. Astrophysical Journal, 2013, 770, 146.	4.5	26
124	BEAMING OF PARTICLES AND SYNCHROTRON RADIATION IN RELATIVISTIC MAGNETIC RECONNECTION. Astrophysical Journal, 2016, 826, 221.	4.5	25
125	Radiative Emission Mechanisms. Space Science Reviews, 2020, 216, 1.	8.1	25
126	The X-ray background as a probe of density fluctuations at high redshift. Monthly Notices of the Royal Astronomical Society, 1997, 284, 499-506.	4.4	24

#	Article	IF	CITATIONS
127	Essay: Cosmic Censorship: The Role of Quantum Gravity. General Relativity and Gravitation, 2000, 32, 2333-2338.	2.0	24
128	Radio flares of compact binary mergers: the effect of non-trivial outflow geometry. Monthly Notices of the Royal Astronomical Society, 2015, 452, 3419-3434.	4.4	23
129	Radio emission from the unbound debris of tidal disruption events. Monthly Notices of the Royal Astronomical Society, 2019, 487, 4083-4092.	4.4	23
130	Implications of the Visible and X-Ray Counterparts to GRB 970228. Physical Review Letters, 1998, 80, 1580-1581.	7.8	22
131	Particle acceleration, magnetization and radiation in relativistic shocks. Monthly Notices of the Royal Astronomical Society, 2016, 460, 2036-2049.	4.4	22
132	Magnetorotational Instability in Eccentric Disks. Astrophysical Journal, 2018, 856, 12.	4.5	21
133	Accurate flux calibration of GW170817: is the X-ray counterpart on the rise?. Monthly Notices of the Royal Astronomical Society, 2021, 510, 1902-1909.	4.4	21
134	RECOVERING THE OBSERVED B/C RATIO IN A DYNAMIC SPIRAL-ARMED COSMIC RAY MODEL. Astrophysical Journal, 2014, 782, 34.	4.5	20
135	GRB Afterglow Parameters in the Era of TeV Observations: The Case of GRB 190114C. Astrophysical Journal, 2021, 923, 135.	4.5	20
136	Tidal Disruptions of Main-sequence Stars. IV. Relativistic Effects and Dependence on Black Hole Mass. Astrophysical Journal, 2020, 904, 101.	4.5	19
137	Linear and circular polarization in ultra-relativistic synchrotron sources – implications to GRB afterglows. Monthly Notices of the Royal Astronomical Society, 2016, 455, 1594-1606.	4.4	18
138	The Extragalactic Ultra-high-energy Cosmic-Ray Dipole. Astrophysical Journal Letters, 2017, 850, L25.	8.3	17
139	Physics of the saturation of particle acceleration in relativistic magnetic reconnection. Monthly Notices of the Royal Astronomical Society, 2018, 476, 3902-3912.	4.4	17
140	The origin of hotspots around Sgr A*: orbital or pattern motion?. Monthly Notices of the Royal Astronomical Society, 2020, 497, 2385-2392.	4.4	17
141	Gravitational wave memory from gamma ray bursts' jets. Physical Review D, 2013, 87, .	4.7	16
142	Probing the Extragalactic Cosmic-Ray Origin with Gamma-Ray and Neutrino Backgrounds. Astrophysical Journal Letters, 2017, 839, L22.	8.3	16
143	Radio constraint on outflows from tidal disruption events. Monthly Notices of the Royal Astronomical Society, 2021, 507, 4196-4210.	4.4	16
144	Constraints on the bulk Lorentz factor of gamma-ray burst jets from <i>Fermi</i> /LAT upper limits. Monthly Notices of the Royal Astronomical Society, 2017, 465, 811-819.	4.4	15

#	Article	IF	CITATIONS
145	Binary pulsar J0737â^'3039 – evidence for a new core collapse and neutron star formation mechanism. Monthly Notices of the Royal Astronomical Society, 2014, 438, 1005-1013.	4.4	14
146	The dynamics of radiation-driven, optically thick winds. Monthly Notices of the Royal Astronomical Society, 2016, 459, 171-177.	4.4	14
147	Cosmic Explosions, Life in the Universe, and the Cosmological Constant. Physical Review Letters, 2016, 116, 081301.	7.8	14
148	Bolometric light curves of aspherical shock breakout. Monthly Notices of the Royal Astronomical Society, 2021, 508, 5766-5785.	4.4	14
149	Tidal Disruptions of Main-sequence Stars. V. The Varieties of Disruptions. Astrophysical Journal, 2020, 904, 68.	4.5	14
150	Cosmic ray anisotropy from large-scale structure and the effect of magnetic horizons. Monthly Notices of the Royal Astronomical Society, 2019, 484, 4167-4173.	4.4	13
151	Limits on mass outflow from optical tidal disruption events. Monthly Notices of the Royal Astronomical Society, 2021, 502, 3385-3393.	4.4	13
152	Light Curves of Tidal Disruption Events in Active Galactic Nuclei. Astrophysical Journal, 2020, 903, 17.	4.5	13
153	Reconciling the diffuse Galactic Î ³ -ray and the cosmic ray spectra. Monthly Notices of the Royal Astronomical Society, 2017, 466, 3674-3681.	4.4	12
154	What powers the radio emission in TDE AT2019dsg: A long-lived jet or the disruption itself?. Monthly Notices of the Royal Astronomical Society, 2022, 511, 5085-5092.	4.4	12
155	The fate of supernova remnants near quiescent supermassive black holes. Monthly Notices of the Royal Astronomical Society, 2015, 447, 3096-3114.	4.4	11
156	THE EFFECT OF COOLING ON PARTICLE TRAJECTORIES AND ACCELERATION IN RELATIVISTIC MAGNETIC RECONNECTION. Astrophysical Journal, 2016, 833, 155.	4.5	11
157	The propagation of choked jet outflows in power-law external media. Monthly Notices of the Royal Astronomical Society, 2019, 489, 2844-2872.	4.4	11
158	On short GRBs similar to GRB 170817A detected by Fermi-GBM. Monthly Notices of the Royal Astronomical Society, 2020, 492, 4283-4290.	4.4	11
159	Late-time radio observations of the short GRB 200522A: constraints on the magnetar model. Monthly Notices of the Royal Astronomical Society: Letters, 2021, 505, L41-L45.	3.3	11
160	High-energy Emission from Tidal Disruption Events in Active Galactic Nuclei. Astrophysical Journal, 2021, 914, 107.	4.5	11
161	The Origin of Binary Black Hole Mergers. Astrophysical Journal, 2020, 892, 64.	4.5	11
162	Gamma-ray burst theory after Swift. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365, 1151-1162.	3.4	10

#	Article	IF	CITATIONS
163	The long, the short and the weak: the origin of gamma-rayÂbursts. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120273.	3.4	10
164	THE B/C AND SUB-IRON/IRON COSMIC RAY RATIOS—FURTHER EVIDENCE IN FAVOR OF THE SPIRAL-ARM DIFFUSION MODEL. Astrophysical Journal, 2016, 826, 47.	4.5	9
165	Spectral signatures of compact sources in the inverse Compton catastrophe limit. Monthly Notices of the Royal Astronomical Society, 2015, 452, 3226-3245.	4.4	8
166	GrailQuest: hunting for atoms of space and time hidden in the wrinkle of Space-Time. Experimental Astronomy, 2021, 51, 1255-1297.	3.7	7
167	Gravitational radiation from accelerating jets. Physical Review D, 2021, 104, .	4.7	7
168	Analytic modelling of synchrotron self-Compton spectra: Application to GRB 190114C. Monthly Notices of the Royal Astronomical Society, 2022, 512, 2142-2153.	4.4	7
169	Relativity at action or gamma-ray Bursts. General Relativity and Gravitation, 1996, 28, 1421-1426.	2.0	6
170	Can soft Î ³ -ray bursts be emitted by accreting black holes?. Nature, 1975, 256, 112-113.	27.8	5
171	Fireballs. AIP Conference Proceedings, 1994, , .	0.4	5
172	GAMMA-RAY BURSTS. International Journal of Modern Physics A, 2002, 17, 2727-2731.	1.5	5
173	Evolution of Supernova Remnants Near the Galactic Center. Astrophysical Journal, 2017, 838, 12.	4.5	4
174	The Impact of Shocks on the Vertical Structure of Eccentric Disks. Astrophysical Journal, 2021, 920, 130.	4.5	4
175	Conformally connected universes. General Relativity and Gravitation, 1983, 15, 1077-1083.	2.0	3
176	Gamma-ray bursts from neutron star mergers. AIP Conference Proceedings, 1994, , .	0.4	3
177	GAMMA-RAY BURSTS - A PRIMER FOR RELATIVISTS. , 2002, , .		3
178	ASTRONOMY: Demotion Looms for Gamma-Ray Bursts. Science, 2002, 295, 986-987.	12.6	3
179	Jet-driven bubbles in Fanaroff–Riley type-I sources. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4926-4936.	4.4	3
180	Nonlinear Evolution of the Magnetorotational Instability in Eccentric Disks. Astrophysical Journal, 2022, 933, 81.	4.5	3

#	Article	IF	CITATIONS
181	Some Recent Peculiarities of the Early Afterglow. AIP Conference Proceedings, 2004, , .	0.4	2
182	Central engine afterglow of Gamma-ray Bursts. AIP Conference Proceedings, 2008, , .	0.4	2
183	Prompt emission from gamma-ray bursts. , 2012, , 121-150.		2
184	Short-Lived ²⁴⁴ Pu Points to Neutron Star Binary Mergers as Sites for r-Process Nucleosynthesis. , 2017, , .		2
185	Gamma-Ray Bursts and Binary Neutron Star Mergers. Symposium - International Astronomical Union, 1996, 165, 489-502.	0.1	1
186	Can internal shocks produce the variability in GRBs?. , 1998, , .		1
187	The Eighth Marcel Grossmann Meeting. , 1999, , .		1
188	The rate and luminosity function of Short GRBs. AIP Conference Proceedings, 2006, , .	0.4	1
189	Prospects for the Discovery of Black Hole Binaries without Mass Accretion with Gaia. Proceedings of the International Astronomical Union, 2016, 12, 41-42.	0.0	1
190	The quantum interaction of macroscopic objects and gravitons. International Journal of Modern Physics D, 2016, 25, 1644020.	2.1	1
191	Electron-capture Isotopes Could Constrain Cosmic-Ray Propagation Models. Astrophysical Journal, 2017, 851, 109.	4.5	1
192	GAMMA-RAY BURSTS AS RELATIVISTIC OBJECTS. , 2012, , .		1
193	Shells and Encounters of Disk Galaxies with Ellipticals. Symposium - International Astronomical Union, 1987, 127, 473-474.	0.1	Ο
194	A simultaneous spectral invariant analysis of the GRB count distribution and time dilation. AIP Conference Proceedings, 1996, , .	0.4	0
195	The implications of direct red-shift measurement of \hat{I}^3 -ray bursts. , 1998, , .		0
196	What have we learned from GRB afterglows?. , 1998, , .		0
197	Who Ordered That? On the Origin of LIGO's Merging Binary Black Holes. , 2019, , 243-257.		Ο