
Nicholas E Geacintov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6205245/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanism of lesion verification by the human XPD helicase in nucleotide excision repair. Nucleic Acids Research, 2022, 50, 6837-6853.	14.5	6
2	Base and Nucleotide Excision Repair Pathways in DNA Plasmids Harboring Oxidatively Generated Guanine Lesions. Chemical Research in Toxicology, 2021, 34, 154-160.	3.3	5
3	Excision of Oxidatively Generated Guanine Lesions by Competitive DNA Repair Pathways. International Journal of Molecular Sciences, 2021, 22, 2698.	4.1	8
4	TENT4A Non-Canonical Poly(A) Polymerase Regulates DNA-Damage Tolerance via Multiple Pathways That Are Mutated in Endometrial Cancer. International Journal of Molecular Sciences, 2021, 22, 6957.	4.1	9
5	Recognition and repair of oxidatively generated DNA lesions in plasmid DNA by a facilitated diffusion mechanism. Biochemical Journal, 2021, 478, 2359-2370.	3.7	2
6	Molecular dynamics simulations reveal how H3K56 acetylation impacts nucleosome structure to promote DNA exposure for lesion sensing. DNA Repair, 2021, 107, 103201.	2.8	8
7	Variable impact of conformationally distinct DNA lesions on nucleosome structure and dynamics: Implications for nucleotide excision repair. DNA Repair, 2020, 87, 102768.	2.8	7
8	Remarkable Enhancement of Nucleotide Excision Repair of a Bulky Guanine Lesion in a Covalently Closed Circular DNA Plasmid Relative to the Same Linearized Plasmid. Biochemistry, 2020, 59, 2842-2848.	2.5	9
9	Inhibition of Excision of Oxidatively Generated Hydantoin DNA Lesions by NEIL1 by the Competitive Binding of the Nucleotide Excision Repair Factor XPC-RAD23B. Biochemistry, 2020, 59, 1728-1736.	2.5	6
10	The DNA damage-sensing NER repair factor XPC-RAD23B does not recognize bulky DNA lesions with a missing nucleotide opposite the lesion. DNA Repair, 2020, 96, 102985.	2.8	5
11	Excision of Oxidatively Generated Guanine Lesions by Competing Base and Nucleotide Excision Repair Mechanisms in Human Cells. Chemical Research in Toxicology, 2019, 32, 753-761.	3.3	19
12	5′,8-Cyclopurine Lesions in DNA Damage: Chemical, Analytical, Biological, and Diagnostic Significance. Cells, 2019, 8, 513.	4.1	43
13	5-Formylcytosine-induced DNA–peptide cross-links reduce transcription efficiency, but do not cause transcription errors in human cells. Journal of Biological Chemistry, 2019, 294, 18387-18397.	3.4	16
14	Nucleotide Excision Repair and Impact of Site-Specific 5′,8-Cyclopurine and Bulky DNA Lesions on the Physical Properties of Nucleosomes. Biochemistry, 2019, 58, 561-574.	2.5	18
15	Synergistic effects of H3 and H4 nucleosome tails on structure and dynamics of a lesion-containing DNA: Binding of a displaced lesion partner base to the H3 tail for GG-NER recognition. DNA Repair, 2018, 65, 73-78.	2.8	10
16	Lesion Sensing during Initial Binding by Yeast XPC/Rad4: Toward Predicting Resistance to Nucleotide Excision Repair. Chemical Research in Toxicology, 2018, 31, 1260-1268.	3.3	20
17	Molecular basis for damage recognition and verification by XPC-RAD23B and TFIIH in nucleotide excision repair. DNA Repair, 2018, 71, 33-42.	2.8	55
18	Nucleotide Excision Repair Lesion-Recognition Protein Rad4 Captures a Pre-Flipped Partner Base in a Benzo[<i>a</i>]pyrene-Derived DNA Lesion: How Structure Impacts the Binding Pathway. Chemical Research in Toxicology, 2017, 30, 1344-1354.	3.3	32

#	Article	IF	CITATIONS
19	The Nonbulky DNA Lesions Spiroiminodihydantoin and 5-Guanidinohydantoin Significantly Block Human RNA Polymerase II Elongation <i>in Vitro</i> . Biochemistry, 2017, 56, 3008-3018.	2.5	14
20	Repair-Resistant DNA Lesions. Chemical Research in Toxicology, 2017, 30, 1517-1548.	3.3	48
21	Mechanism of error-free replication across benzo[a]pyrene stereoisomers by Rev1 DNA polymerase. Nature Communications, 2017, 8, 965.	12.8	20
22	Removal of oxidatively generated DNA damage by overlapping repair pathways. Free Radical Biology and Medicine, 2017, 107, 53-61.	2.9	42
23	Nucleotide Excision Repair and Transcription-coupled DNA Repair Abrogate the Impact of DNA Damage on Transcription. Journal of Biological Chemistry, 2016, 291, 848-861.	3.4	21
24	Translesion synthesis past guanine(C8)–thymine(N3) intrastrand cross-links catalyzed by selected A- and Y-family polymerases. Molecular BioSystems, 2016, 12, 1892-1900.	2.9	3
25	Characterization of the interactions of PARP-1 with UV-damaged DNA in vivo and in vitro. Scientific Reports, 2016, 6, 19020.	3.3	20
26	Base and Nucleotide Excision Repair of Oxidatively Generated Guanine Lesions in DNA. Journal of Biological Chemistry, 2016, 291, 5309-5319.	3.4	49
27	Entrapment of a Histone Tail by a DNA Lesion in a Nucleosome Suggests the Lesion Impacts Epigenetic Marking: A Molecular Dynamics Study. Biochemistry, 2016, 55, 239-242.	2.5	10
28	Oxidatively Generated Guanine(C8)-Thymine(N3) Intrastrand Cross-links in Double-stranded DNA Are Repaired by Base Excision Repair Pathways. Journal of Biological Chemistry, 2015, 290, 14610-14617.	3.4	16
29	Recognition of Damaged DNA for Nucleotide Excision Repair: A Correlated Motion Mechanism with a Mismatched <i>cis-syn</i> Thymine Dimer Lesion. Biochemistry, 2015, 54, 5263-5267.	2.5	26
30	Resistance to Nucleotide Excision Repair of Bulky Guanine Adducts Opposite Abasic Sites in DNA Duplexes and Relationships between Structure and Function. PLoS ONE, 2015, 10, e0137124.	2.5	17
31	Identification of novel DNA-damage tolerance genes reveals regulation of translesion DNA synthesis by nucleophosmin. Nature Communications, 2014, 5, 5437.	12.8	43
32	Structural basis for the recognition of diastereomeric 5′,8-cyclo-2′-deoxypurine lesions by the human nucleotide excision repair system. Nucleic Acids Research, 2014, 42, 5020-5032.	14.5	69
33	Ribonucleotides as nucleotide excision repair substrates. DNA Repair, 2014, 13, 55-60.	2.8	19
34	Human DNA polymerases catalyze lesion bypass across benzo[a]pyrene-derived DNA adduct clustered with an abasic site. DNA Repair, 2014, 24, 1-9.	2.8	6
35	Nuclear Magnetic Resonance Studies of an <i>N</i> ² -Guanine Adduct Derived from the Tumorigen Dibenzo[<i>a</i> , <i>l</i>]pyrene in DNA: Impact of Adduct Stereochemistry, Size, and Local DNA Sequence on Solution Conformations. Biochemistry, 2014, 53, 1827-1841.	2.5	8
36	The relationships between XPC binding to conformationally diverse DNA adducts and their excision by the human NER system: Is there a correlation?. DNA Repair, 2014, 19, 55-63.	2.8	33

#	Article	IF	CITATIONS
37	Thermodynamic Profiles and Nuclear Magnetic Resonance Studies of Oligonucleotide Duplexes Containing Single Diastereomeric Spiroiminodihydantoin Lesions. Biochemistry, 2013, 52, 1354-1363.	2.5	28
38	Generation of Guanine–Thymine Cross-Links in Human Cells by One-Electron Oxidation Mechanisms. Chemical Research in Toxicology, 2013, 26, 1031-1033.	3.3	39
39	Adenine–DNA Adducts Derived from the Highly Tumorigenic Dibenzo[<i>a</i> , <i>l</i>]pyrene Are Resistant to Nucleotide Excision Repair while Guanine Adducts Are Not. Chemical Research in Toxicology, 2013, 26, 783-793.	3.3	40
40	Role of Structural and Energetic Factors in Regulating Repair of a Bulky DNA Lesion with Different Opposite Partner Bases. Biochemistry, 2013, 52, 5517-5521.	2.5	15
41	Free Energy Profiles of Base Flipping in Intercalative Polycyclic Aromatic Hydrocarbon-Damaged DNA Duplexes: Energetic and Structural Relationships to Nucleotide Excision Repair Susceptibility. Chemical Research in Toxicology, 2013, 26, 1115-1125.	3.3	18
42	Nucleotide excision repair of 2-acetylaminofluorene- and 2-aminofluorene-(C8)-guanine adducts: molecular dynamics simulations elucidate how lesion structure and base sequence context impact repair efficiencies. Nucleic Acids Research, 2012, 40, 9675-9690.	14.5	61
43	Structural, energetic and dynamic properties of guanine(C8)–thymine(N3) cross-links in DNA provide insights on susceptibility to nucleotide excision repair. Nucleic Acids Research, 2012, 40, 2506-2517.	14.5	29
44	Nucleotide Excision Repair Efficiencies of Bulky Carcinogen–DNA Adducts Are Governed by a Balance between Stabilizing and Destabilizing Interactions. Biochemistry, 2012, 51, 1486-1499.	2.5	46
45	Nuclear Magnetic Resonance Solution Structure of an N2-Guanine DNA Adduct Derived from the Potent Tumorigen Dibenzo[a,l]pyrene: Intercalation from the Minor Groove with Ruptured Watson–Crick Base Pairing. Biochemistry, 2012, 51, 9751-9762.	2.5	12
46	Human DNA polymerase λ catalyzes lesion bypass across benzo[a]pyrene-derived DNA adduct during base excision repair. DNA Repair, 2012, 11, 367-373.	2.8	18
47	Intercalative Conformations of the 14 <i>R</i> (+)- and 14 <i>S</i> (â^²)- <i>trans-anti</i> -DB[<i>a,l</i>]P- <i>N</i> ⁶ -dA Adducts: Molecular Modeling and MD Simulations. Chemical Research in Toxicology, 2011, 24, 522-531.	3.3	28
48	Generation of Guanine–Thymidine Cross-Links in DNA by Peroxynitrite/Carbon Dioxide. Chemical Research in Toxicology, 2011, 24, 1144-1152.	3.3	40
49	Probing for DNA damage with β-hairpins: Similarities in incision efficiencies of bulky DNA adducts by prokaryotic and human nucleotide excision repair systems in vitro. DNA Repair, 2011, 10, 684-696.	2.8	49
50	Resistance of bulky DNA lesions to nucleotide excision repair can result from extensive aromatic lesion–base stacking interactions. Nucleic Acids Research, 2011, 39, 8752-8764.	14.5	62
51	Covalent Polycyclic Aromatic Hydrocarbon–DNA Adducts: Carcinogenicity, Structure, and Function. , 2011, , 181-207.		2
52	Base Sequence Context Effects on Nucleotide Excision Repair. Journal of Nucleic Acids, 2010, 2010, 1-9.	1.2	33
53	A Bulky DNA Lesion Derived from a Highly Potent Polycyclic Aromatic Tumorigen Stabilizes Nucleosome Core Particle Structure. Biochemistry, 2010, 49, 9943-9945.	2.5	17
54	Distant Neighbor Base Sequence Context Effects in Human Nucleotide Excision Repair of a Benzo[a]pyrene-derived DNA Lesion. Journal of Molecular Biology, 2010, 399, 397-409.	4.2	34

#	Article	IF	CITATIONS
55	Absolute configurations of DNA lesions determined by comparisons of experimental ECD and ORD spectra with DFT calculations. Chirality, 2009, 21, E231-41.	2.6	21
56	Differential Nucleotide Excision Repair Susceptibility of Bulky DNA Adducts in Different Sequence Contexts: Hierarchies of Recognition Signals. Journal of Molecular Biology, 2009, 385, 30-44.	4.2	48
57	The Sequence Dependence of Human Nucleotide Excision Repair Efficiencies of Benzo[a]pyrene-derived DNA Lesions: Insights into the Structural Factors that Favor Dual Incisions. Journal of Molecular Biology, 2009, 386, 1193-1203.	4.2	67
58	Absolute Configurations of Spiroiminodihydantoin and Allantoin Stereoisomers: Comparison of Computed and Measured Electronic Circular Dichroism Spectra. Chemical Research in Toxicology, 2009, 22, 1189-1193.	3.3	52
59	NMR and Computational Studies of Stereoisomeric Equine Estrogen-Derived DNA Cytidine Adducts in Oligonucleotide Duplexes: Opposite Orientations of Diastereomeric Forms. Biochemistry, 2009, 48, 7098-7109.	2.5	9
60	Oxidation of Guanine by Carbonate Radicals Derived from Photolysis of Carbonatotetramminecobalt(III) Complexes and the pH Dependence of Intrastrand DNA Cross‣inks Mediated by Guanine Radical Reactions. ChemBioChem, 2008, 9, 1985-1991.	2.6	26
61	Transcription of DNA containing the 5-guanidino-4-nitroimidazole lesion by human RNA polymerase II and bacteriophage T7 RNA polymerase. DNA Repair, 2008, 7, 1276-1288.	2.8	15
62	Determination of Absolute Configurations of 4-Hydroxyequilenin-Cytosine and -Adenine Adducts by Optical Rotatory Dispersion, Electronic Circular Dichroism, Density Functional Theory Calculations, and Mass Spectrometry. Chemical Research in Toxicology, 2008, 21, 1739-1748.	3.3	9
63	Conformational Properties of Equileninâ	3.3	13
64	DNA Adduct Structure–Function Relationships: Comparing Solution with Polymerase Structures. Chemical Research in Toxicology, 2008, 21, 45-52.	3.3	52
65	Oxidation of single-stranded oligonucleotides by carbonate radical anions: generating intrastrand cross-links between guanine and thymine bases separated by cytosines. Nucleic Acids Research, 2008, 36, 742-755.	14.5	76
66	Exocyclic amino groups of flanking guanines govern sequence-dependent adduct conformations and local structural distortions for minor groove-aligned benzo[a]pyrenyl-guanine lesions in a GG mutation hotspot context. Nucleic Acids Research, 2007, 35, 1555-1568.	14.5	32
67	Following an environmental carcinogen N2-dG adduct through replication: elucidating blockage and bypass in a high-fidelity DNA polymerase. Nucleic Acids Research, 2007, 35, 4275-4288.	14.5	16
68	Dynamics of a Benzo[a]pyrene-derived Guanine DNA Lesion in TGT and CGC Sequence Contexts: Enhanced Mobility in TGT Explains Conformational Heterogeneity, Flexible Bending, and Greater Susceptibility to Nucleotide Excision Repair. Journal of Molecular Biology, 2007, 374, 292-305.	4.2	46
69	Sequence Context- and Temperature-Dependent Nucleotide Excision Repair of a Benzo[a]pyrene Diol Epoxide-Guanine DNA Adduct Catalyzed by Thermophilic UvrABC Proteinsâ€. Biochemistry, 2007, 46, 7006-7015.	2.5	37
70	The human DNA repair factor XPC-HR23B distinguishes stereoisomeric benzo[a]pyrenyl-DNA lesions. EMBO Journal, 2007, 26, 2923-2932.	7.8	94
71	Spectroscopic Investigation of Charge Transfer in DNA. , 2006, , 175-196.		4
72	Flexible 5-Guanidino-4-nitroimidazole DNA Lesions:  Structures and Thermodynamics. Biochemistry, 2006, 45, 6644-6655.	2.5	13

#	Article	IF	CITATIONS
73	Assignment of Absolute Configurations of the Enantiomeric Spiroiminodihydantoin Nucleobases by Experimental and Computational Optical Rotatory Dispersion Methods. Chemical Research in Toxicology, 2006, 19, 908-913.	3.3	33
74	Mechanisms of Repair of Polycyclic Aromatic Hydrocarbon-Induced DNA Damage. , 2005, , 211-258.		5
75	Structure of a High Fidelity DNA Polymerase Bound to a Benzo[a]pyrene Adduct That Blocks Replication. Journal of Biological Chemistry, 2005, 280, 3764-3770.	3.4	74
76	Base Selectivity and Effects of Sequence and DNA Secondary Structure on the Formation of Covalent Adducts Derived from the Equine Estrogen Metabolite 4-Hydroxyequilenin. Chemical Research in Toxicology, 2005, 18, 1737-1747.	3.3	29
77	Combination of Nitrogen Dioxide Radicals with 8-Oxo-7,8-dihydroguanine and Guanine Radicals in DNA:Â Oxidation and Nitration End-Products. Journal of the American Chemical Society, 2005, 127, 2191-2200.	13.7	60
78	Structural and Thermodynamic Features of Spiroiminodihydantoin Damaged DNA Duplexesâ€. Biochemistry, 2005, 44, 13342-13353.	2.5	47
79	Spiroiminodihydantoin Lesions Derived from Guanine Oxidation:  Structures, Energetics, and Functional Implications. Biochemistry, 2005, 44, 6043-6051.	2.5	35
80	Methylation of Cytosine at C5 in a CpG Sequence Context Causes a Conformational Switch of a Benzo[a]pyrene diol epoxide-N2-guanine Adduct in DNA from a Minor Groove Alignment to Intercalation with Base Displacement. Journal of Molecular Biology, 2005, 346, 951-965.	4.2	56
81	Ultrafast transient-absorption and steady-state fluorescence measurements on 2-aminopurine substituted dinucleotides and 2-aminopurine substituted DNA duplexes. Physical Chemistry Chemical Physics, 2004, 6, 154.	2.8	45
82	Oxidative Generation of Guanine Radicals by Carbonate Radicals and Their Reactions with Nitrogen Dioxide to Form Site Specific 5-Guanidino-4-nitroimidazole Lesions in Oligodeoxynucleotides. Chemical Research in Toxicology, 2003, 16, 966-973.	3.3	55
83	Conformations of Stereoisomeric Base Adducts to 4-Hydroxyequilenin. Chemical Research in Toxicology, 2003, 16, 695-707.	3.3	18
84	Photoinduced Oxidative DNA Damage Revealed by an Agarose Gel Nicking Assay: A Biophysical Chemistry Laboratory Experiment. Journal of Chemical Education, 2003, 80, 1297.	2.3	8
85	Simulating Structural and Thermodynamic Properties of Carcinogen-Damaged DNA. Biophysical Journal, 2003, 84, 2137-2148.	0.5	30
86	Human RNA polymerase II is partially blocked by DNA adducts derived from tumorigenic benzo[c]phenanthrene diol epoxides: relating biological consequences to conformational preferences. Nucleic Acids Research, 2003, 31, 6004-6015.	14.5	31
87	Role of Base Sequence Context in Conformational Equilibria and Nucleotide Excision Repair of Benzo[a]pyrene Diol Epoxideâ^'Adenine Adducts. Biochemistry, 2003, 42, 2339-2354.	2.5	20
88	Relating repair susceptibility of carcinogen-damaged DNA with structural distortion and thermodynamic stability. Nucleic Acids Research, 2002, 30, 3422-3432.	14.5	40
89	trans-Lesion Synthesis Past Bulky Benzo[a]pyrene Diol Epoxide N2-dG and N6-dA Lesions Catalyzed by DNA Bypass Polymerases. Journal of Biological Chemistry, 2002, 277, 30488-30494.	3.4	180
90	Translesion Synthesis by Human DNA Polymerase κ on a DNA Template Containing a Single Stereoisomer of dG-(+)- or dG-(â^')-anti-N2-BPDE (7,8-Dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene)â€. Biochemistry, 2002, 41, 6100-6106.	2.5	155

#	Article	IF	CITATIONS
91	Fluorescence Characteristics of Site-Specific and Stereochemically Distinct Benzo[a]pyrene Diol Epoxideâ`'DNA Adducts as Probes of Adduct Conformation. Chemical Research in Toxicology, 2002, 15, 118-126.	3.3	21
92	Synthesis and Characterization of Site-Specific and Stereoisomeric Fjord Dibenzo[a,l]pyrene Diol EpoxideⰒN6-Adenine Adducts:  Unusual Thermal Stabilization of Modified DNA Duplexes. Chemical Research in Toxicology, 2002, 15, 249-261.	3.3	42
93	Thermodynamic and structural factors in the removal of bulky DNA adducts by the nucleotide excision repair machinery. Biopolymers, 2002, 65, 202-210.	2.4	128
94	Trapping of DNA nucleotide excision repair factors by nonrepairable carcinogen adducts. Cancer Research, 2002, 62, 4229-35.	0.9	23
95	Direct Spectroscopic Observation of 8-Oxo-7,8-dihydro-2â€~-deoxyguanosine Radicals in Double-Stranded DNA Generated by One-Electron Oxidation at a Distance by 2-Aminopurine Radicals. Journal of Physical Chemistry B, 2001, 105, 586-592.	2.6	58
96	Base Sequence Dependence of in Vitro Translesional DNA Replication past a Bulky Lesion Catalyzed by the Exo-Klenow Fragment of Pol lâ€. Biochemistry, 2001, 40, 6660-6669.	2.5	32
97	Impact of Site-Specific Benzo[a]Pyrene Diol Epoxide-dG Lesions at or near Single/Double-Strand DNA Junctions on DNA Bending. Polycyclic Aromatic Compounds, 2000, 21, 1-10.	2.6	4
98	The processing of a Benzo(a)pyrene adduct into a frameshift or a base substitution mutation requires a different set of genes in Escherichia coli. Molecular Microbiology, 2000, 38, 299-307.	2.5	73
99	Proton-coupled electron transfer in the oxidation of guanines by an aromatic pyrenyl radical cation in aqueous solutions. Physical Chemistry Chemical Physics, 2000, 2, 1531-1535.	2.8	30
100	Acid–base equilibria in aqueous solutions of 2-aminopurine radical cations generated by two-photon photoionization. Perkin Transactions II RSC, 2000, , 271-275.	1.1	13
101	Conformational Determinants of Structures in Stereoisomeric Cis-Opened anti-Benzo[a]pyrene Diol Epoxide Adducts to Adenine in DNA. Chemical Research in Toxicology, 2000, 13, 811-822.	3.3	19
102	Differential Incision of Bulky Carcinogenâ^'DNA Adducts by the UvrABC Nuclease:  Comparison of Incision Rates and the Interactions of Uvr Subunits with Lesions of Different Structures. Biochemistry, 2000, 39, 12252-12261.	2.5	25
103	Stereochemical Origin of Opposite Orientations in DNA Adducts Derived from Enantiomeric anti-Benzo[a]pyrene Diol Epoxides with Different Tumorigenic Potentials. Biochemistry, 1999, 38, 2956-2968.	2.5	42
104	Total Synthesis, Mass Spectrometric Sequencing, and Stabilities of Oligonucleotide Duplexes with Singletrans-anti-BPDE-N6-dA Lesions in theN-rascodon 61 and Other Sequence Contexts. Polycyclic Aromatic Compounds, 1999, 17, 1-10.	2.6	14
105	Solution Structure of the (+)-cis-anti-Benzo[a]pyrene-dA ([BP]dA) Adduct Opposite dT in a DNA Duplexâ€. Biochemistry, 1999, 38, 10831-10842.	2.5	39
106	Origins of Conformational Differences between Cis and Trans DNA Adducts Derived from Enantiomeric anti-Benzo[a]Pyrene Diol Epoxides. Chemical Research in Toxicology, 1999, 12, 597-609.	3.3	31
107	Mismatch Repair Processing of Carcinogen-DNA Adducts Triggers Apoptosis. Molecular and Cellular Biology, 1999, 19, 8292-8301.	2.3	115
108	Multiphoton Nearâ€Infrared Femtosecond Laser Pulseâ€Induced DNA Damage With and Without the Photosensitizer Proflavine. Photochemistry and Photobiology, 1999, 69, 265-274.	2.5	5

NICHOLAS E GEACINTOV

#	Article	IF	CITATIONS
109	Photoaddition to DNA by Nonintercalated Chlorpromazine Molecules. Photochemistry and Photobiology, 1998, 68, 692-697.	2.5	16
110	Photoinduced electron transfer and strand cleavage in pyrenyl-DNA complexes and adducts. Journal of Physical Organic Chemistry, 1998, 11, 561-565.	1.9	15
111	Role of Hydrophobic Effects in the Reaction of a Polynuclear Aromatic Diol Epoxide with Oligodeoxynucleotides in Aqueous Solutions. Chemical Research in Toxicology, 1998, 11, 381-388.	3.3	27
112	Bending and Circularization of Site-Specific and Stereoisomeric Carcinogenâ^'DNA Adductsâ€. Biochemistry, 1998, 37, 769-778.	2.5	34
113	Mutagenic Potential of Stereoisomeric Bay Region (+)- and (â~)-cis-anti-Benzo[a]pyrene Diol Epoxide-N2-2â€~-deoxyguanosine Adducts in Escherichia coli and Simian Kidney Cells. Biochemistry, 1998, 37, 10164-10172.	2.5	92
114	Sequence Dependence and Characteristics of Bends Induced by Site-Specific Polynuclear Aromatic Carcinogenâ^Deoxyguanosine Lesions in Oligonucleotides. Biochemistry, 1998, 37, 4993-5000.	2.5	31
115	Photoinduced electron transfer and strand cleavage in pyrenyl–DNA complexes and adducts. Journal of Physical Organic Chemistry, 1998, 11, 561-565.	1.9	1
116	NMR Solution Structures of Stereoisomeric Covalent Polycyclic Aromatic Carcinogenâ^'DNA Adducts: Principles, Patterns, and Diversity. Chemical Research in Toxicology, 1997, 10, 111-146.	3.3	331
117	The Major, N2-dG Adduct of (+)-anti-B[a]PDE Shows a Dramatically Different Mutagenic Specificity (Predominantly, G → A) in a 5†-CGT-3†Sequence Contextâ€. Biochemistry, 1997, 36, 10256-10261.	2.5	82
118	Sequence Specific Mutagenesis of the Major (+)-anti-Benzo[a]pyrene Diol Epoxideâ^'DNA Adduct at a Mutational Hot Spotin Vitroand inEscherichia coliCells. Chemical Research in Toxicology, 1997, 10, 369-377.	3.3	79
119	Solution Conformation of the (â^')-trans-anti-[BP]dG Adduct Opposite a Deletion Site in a DNA Duplex:Â Intercalation of the Covalently Attached Benzo[a]pyrene into the Helix with Base Displacement of the Modified Deoxyguanosine into the Minor Grooveâ€. Biochemistry, 1997, 36, 13780-13790.	2.5	34
120	Development of a Monoclonal Antibody Recognizing Benzo[c]phenanthrenediol Epoxide-DNA Adducts: Application to Immunohistochemical Detection of DNA Damage. Chemical Research in Toxicology, 1997, 10, 948-952.	3.3	3
121	How Stereochemistry Affects Mutagenesis by N2-Deoxyguanosine Adducts of 7,8-Dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene:  Configuration of the Adduct Bond Is More Important Than Those of the Hydroxyl Groups. Biochemistry, 1997, 36, 13263-13269.	2.5	60
122	Base Sequence-Dependent Bends in Site-Specific Benzo[a]pyrene Diol Epoxide-Modified Oligonucleotide Duplexes. Chemical Research in Toxicology, 1996, 9, 255-261.	3.3	25
123	Differential Hydration Thermodynamics of Stereoisomeric DNAâ^Benzo[a]pyrene Adducts Derived from Diol Epoxide Enantiomers with Different Tumorigenic Potentials. Journal of the American Chemical Society, 1996, 118, 3804-3810.	13.7	39
124	Solution Conformation of the (â^')-cis-anti-Benzo[a]pyrenyl-dG Adduct Opposite dC in a DNA Duplex: Intercalation of the Covalently Attached BP Ring into the Helix with Base Displacement of the Modified Deoxyguanosine into the Major Groove. Biochemistry, 1996, 35, 9850-9863.	2.5	85
125	Interference of benzo[a]pyrene diol epoxide-deoxyguanosine adducts in a GC box with binding of the transcription factor Sp1. Molecular Carcinogenesis, 1996, 16, 44-52.	2.7	20
126	Conformational studies of the (+)-trans, (â~')-trans, (+)-cis, and (â~')-cis adducts of anti-benzo[a]pyrene diolepoxide to N2-dG in duplex oligonucleotides using polyacrylamide gel electrophoresis and low-temperature fluorescence spectroscopy. Biophysical Chemistry, 1995, 56, 281-296.	2.8	51

#	Article	IF	CITATIONS
127	Synthesis and characterization of covalent adducts derived from the binding of benzo[a]pyrene diol epoxide to a -GGG- sequence in a deoxyoligonucleotide. Carcinogenesis, 1995, 16, 357-365.	2.8	50
128	Stereochemistry-dependent bending in oligonucleotide duplexes induced by site-specific covalent benzo[a]pyrene diol epoxide-guanine lesions. Nucleic Acids Research, 1995, 23, 2314-2319.	14.5	28
129	Direct Synthesis and Characterization of Site-Specific Adenosyl Adducts Derived from the Binding of a 3,4-Dihydroxy-1,2-epoxybenzo[c]phenanthrene Stereoisomer to an 11-mer Oligodeoxyribonucleotide. Chemical Research in Toxicology, 1995, 8, 444-454.	3.3	38
130	The Major, N2-Gua Adduct of the (+)-anti-Benzo[a]pyrene Diol Epoxide Is Capable of Inducing G.fwdarw.A and G.fwdarw.C, in Addition to G.fwdarw.T, Mutations. Biochemistry, 1995, 34, 13545-13553.	2.5	86
131	Solution Conformation of the (-)-trans-anti-Benzo[c]phenanthrene-dA ([BPh]dA) Adduct opposite dT in a DNA Duplex: Intercalation of the Covalently Attached Benzo[c]phenanthrenyl Ring to the 3'-Side of the Adduct Site and Comparison with the (+)-trans-anti-[BPh]dA opposite dT Stereoisomer. Biochemistry, 1995, 34, 1295-1307.	2.5	91
132	Interaction of the UvrABC Nuclease System with a DNA Duplex Containing a Single Stereoisomer of dG-(+)- or dG-(-)-anti-BPDE. Biochemistry, 1995, 34, 13582-13593.	2.5	82
133	PSORALENâ€MEDIATED VIRUS PHOTOINACTIVATION IN PLATELET CONCENTRATES: ENHANCED SPECIFICITY OF VIRUS KILL IN THE ABSENCE OF SHORTER UVA WAVELENGTHS. Photochemistry and Photobiology, 1995, 62, 917-922.	2.5	15
134	Solution Conformation of the (+)-cis-anti-[BP]dG Adduct Opposite a Deletion Site in a DNA Duplex: Intercalation of the Covalently Attached Benzo[a]pyrene into the Helix with Base Displacement of the Modified Deoxyguanosine into the Minor Groove. Biochemistry, 1994, 33, 11518-11527.	2.5	50
135	Solution Conformation of the (+)-trans-anti-[BP]dG Adduct Opposite a Deletion Site in a DNA Duplex: Intercalation of the Covalently Attached Benzo[a]pyrene into the Helix with Base Displacement of the Modified Deoxyguanosine into the Major Groove. Biochemistry, 1994, 33, 11507-11517.	2.5	55
136	MECHANISMS OF QUENCHING OF THE FLUORESCENCE OF A BENZO[a]PYRENE TETRAOL METABOLITE MODEL COMPOUND BY 2â€2â€ÐEOXYNUCLEOSIDES. Photochemistry and Photobiology, 1993, 58, 185-194.	2.5	48
137	Solution conformation of the (+)-cis-anti-[BP]dG adduct in a DNA duplex: Intercalation of the covalently attached benzo[a]pyrenyl ring into the helix and displacement of the modified deoxyguanosine. Biochemistry, 1993, 32, 4145-4155.	2.5	169
	Translesional synthesis on a DNA template containing a single stereoisomer of dG-(+)- or		

#	Article	IF	CITATIONS
145	Preparation and isolation of adducts in high yield derived from the binding of two benzo[a]pyrene-7,8-dihydroxy-9,10-oxide stereoisomers to the oligonucleotide d(ATATGTATA). Carcinogenesis, 1990, 11, 1667-1672.	2.8	103
146	FLUORESCENCE SPECTROSCOPY OF BENZO[a]PYRENE DIOL EPOXIDE-DNA ADDUCTS. CONFORMATION-SPECIFIC EMISSION SPECTRA. Photochemistry and Photobiology, 1989, 50, 327-337.	2.5	15
147	ACRYLAMIDE AND MOLECULAR OXYGEN FLUORESCENCE QUENCHING AS A PROBE OF SOLVENTâ€ACCESSIBILITY OF AROMATIC FLUOROPHORES COMPLEXED WITH DNA IN RELATION TO THEIR CONFORMATIONS: CORONENEâ€ĐNA AND OTHER COMPLEXES. Photochemistry and Photobiology, 1988, 47, 181-188.	2.5	24
148	FLUORESCENCE DECAY KINETICS and CHARACTERISTICS OF BIMOLECULAR EXCITON ANNIHILATION IN CHLOROPLASTS. Photochemistry and Photobiology, 1988, 48, 333-339.	2.5	6
149	Energy transfer and fluorescence mechanisms in photosynthetic membranes. Critical Reviews in Plant Sciences, 1987, 5, 1-44.	5.7	48
150	PRINCIPLES AND APPLICATIONS OF FLUORESCENCE TECHNIQUES IN BIOPHYSICAL CHEMISTRY*. Photochemistry and Photobiology, 1987, 45, 547-553.	2.5	28
151	A FLOW LINEAR DICHROISM STUDY OF THE ORIENTATION OF 4',5'-PSORALEN-DNA PHOTOADDUCTS. Photochemistry and Photobiology, 1987, 45, 601-607.	2.5	13
152	Conformations of Complexes Derived from the Interactions of Two Stereoisomeric Bay-Region 5-Methylchrysene Diol Epoxides with DNA. Journal of Biomolecular Structure and Dynamics, 1986, 3, 949-965.	3.5	5
153	Mechanisms of Interaction of Polycyclic Aromatic Diol Epoxides with DNA and Structures of the Adducts. ACS Symposium Series, 1985, , 107-124.	0.5	18
154	Stereoselective Covalent Binding of Anti-benzo(a)pyrene Diol Epoxide to DNA Conformation of Enantiomer Adducts. Journal of Biomolecular Structure and Dynamics, 1984, 1, 1473-1484.	3.5	34
155	EFFECT OF SPATIAL NON-UNIFORMITY OF ILLUMINATION IN NON-LINEAR INTENSITY-DEPENDENT PHOTO PHYSICAL EXPERIMENTS. APPLICATION TO SOME FLUORESCENCE YIELD MEASUREMENTS IN PHOTOSYNTHETIC SYSTEMS. Photochemistry and Photobiology, 1983, 37, 475-478.	2.5	7
156	RELATIVE CONTRIBUTIONS OF TRYPTOPHAN and TYROSINE TO THE PHOSPHORESCENCE EMISSION OF HUMAN SERUM ALBUMIN AT LOW TEMPERATURES. Photochemistry and Photobiology, 1982, 35, 299-304.	2.5	4
157	FLUORESCENCE STUDY OF THE PHYSICOâ CHEMICAL PROPERTIES OF A BENZO(A)PYRENE 7 ,8â BIHYDRODIOL 9 ,10â OXIDE DERIVATIVE BOUND COVALENTLY TO DNA. Photochemistry and Photobiology, 1979, 29, 223-232.	2.5	65
158	A LINEAR DICHROISM STUDY OF THE ORIENTATION OF AROMATIC PROTEIN RESIDUES IN MAGNETICALLY ORIENTED BOVINE ROD OUTER SEGMENTS. Photochemistry and Photobiology, 1978, 27, 51-54.	2.5	17
159	A SINGLE PULSE PICOSECOND LASER STUDY OF EXCITON DYNAMICS IN CHLOROPLASTS. Photochemistry and Photobiology, 1977, 26, 629-638.	2.5	68
160	Triplets of aromatic dyes bound to DNA as probes of the mobility of DNA-bound metal ions. FEBS Letters, 1976, 71, 236-240.	2.8	13
161	Deuterium effect on the quenching of aromatic hydrocarbon triplet excited states by oxygen. Journal of Chemical Physics, 1974, 60, 3251-3257.	3.0	8
162	Quenching of excited triplets of aromatic hydrocarbons by molecular oxygen. Journal of Chemical Physics, 1973, 59, 4428-4434.	3.0	8

4

#	Article	IF	CITATIONS
163	Singlet Exciton Fission and Tri plet-Tri plet Exciton Fusion in Crystalline Tet racene. Molecular Crystals, 1969, 6, 83-104.	1.2	94

Reactions of Reactive Nitrogen Species and Carbonate Radical Anions with DNA. , 0, , 325-355.